
 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 1

MANUAL

APPLICATION INTERFACING WITH CUA32 CONTROL UNITS

NEWSON NV

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 2

Table of Contents

1. FIRST STEPS ... 6

SOFTWARE PACKAGE .. 6
10 STEPS TOWARDS THE FIRST MARKING .. 6

2. APPLICATION INTERFACING .. 8

3. DEFLECTOR CONTROL ... 10

4. DEFLECTOR CALIBRATION ... 12

MARK SQUARE AND MEASURE .. 12
MARK FIDUCIALS AND MEASURE ... 14
2D CALIBRATION DATA FILE .. 14
3D CALIBRATION DATA FILE .. 16
BEACON FULLY AUTOMATIC CALIBRATION .. 17
16/18 BIT ... 17

5. LASER CONTROL .. 18

GATE MODE .. 18
BURST MODE .. 18
CO2 MODE ... 18
BURST WITH SPEED MODULATED PERIOD .. 18
LASER LINK ... 19
ON-OFF DELAYS .. 20
POWER ... 20

6. ON-THE-FLY CONTROL ... 22

7. ON-THE-FLY RESOLVER CALIBRATION ... 24

RESOLVER CALIBRATION DATA FILE .. 24

8. TABLE AXIS CONTROL .. 26

OPEN LOOP TRACKING ... 30
CLOSED LOOP TRACKING ... 31
PROCESSING ON-THE-FLY RESOLVER CALIBRATION ... 32

9. INTERLOCK .. 33

10. LIBRARY FUNCTIONS ... 34

APPLICABILITY ... 34
TARGET AIMING ... 34
SCOPE .. 34
FUNCTION TABLE ... 35
RTABORT(); .. 39
RTACCEPTDATA(LONG DATATYPE); ... 40
RTADDCALIBRATIONDATA(CONST CHAR* FILENAME); ... 41
RTARCMOVETO(DOUBLE X, DOUBLE Y, DOUBLE BF); ... 42
RTARCTO(DOUBLE X, DOUBLE Y, DOUBLE BF); .. 42
RTBURST(LONG TIME); .. 43
RTCIRCLE(DOUBLE X, DOUBLE Y, DOUBLE ANGLE); .. 44
RTCIRCLEMOVE(DOUBLE X, DOUBLE Y, DOUBLE ANGLE); ... 44
RTERASEFROMFLASH(CONST CHAR* FILENAME); ... 45
RTFILECLOSE(); ... 46
RTFILECLOSEATHOST(); ... 46
RTFILECLOSEATINDEX(LONG INDEX); .. 46
RTFILEDOWNLOAD(CONST CHAR* FILENAME, CONST CHAR* DESTFILE); .. 47
RTFILEFETCH(CONST CHAR* FILENAME); ... 48
RTFILEOPEN(CONST CHAR* FILENAME); .. 49

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 3

RTFILEUPLOAD(CONST CHAR* SRCFILE, CONST CHAR* FILENAME); .. 50
RTFILEUPLOADATINDEX(CONST CHAR* SRCFILE, CONST CHAR* FILENAME, LONG INDEX); 50
RTFONTDEF(CONST CHAR* NAME); .. 51
RTCHARDEF(LONG ASCII); .. 51
RTFONTDEFEND(); ... 51
RTFORMATFLASH(); .. 52
RTGETANALOG(LONG NR, LONG* VALUE); ... 53
RTGETCANLINK(LONG ADDRESS, LONG* VALUE); ... 54
RTGETCFGIO(LONG NR, LONG *VALUE); .. 55
RTGETCOUNTER(LONG* VALUE); ... 56
RTGETDEFLREPLIES(LONG* CH1, LONG* CH2, LONG* CH3); ... 57
RTGETFIELDSIZE(DOUBLE* SIZE); ... 58
RTGETFIELDSIZEZ(DOUBLE* SIZE); ... 58
RTGETFILEINDEX(CONST CHAR* FILENAME, LONG* INDEX); .. 59
RTGETFIRSTFREEUSBDEVICE(CHAR* NAME); ... 60
RTGETNEXTFREEUSBDEVICE(CHAR* NAME); ... 60
RTGETFLASHFIRSTFILEENTRY(CHAR* NAME, LONG* SIZE); .. 61
RTGETFLASHNEXTFILEENTRY(CHAR* NAME, LONG* SIZE); ... 61
RTGETFLASHMEMORYSIZES(LONG* TOTAL, LONG* ALLOCATED); .. 62
RTGETID(CHAR* NAME); ... 63
RTGETIO(LONG* VALUE); .. 64
RTGETIP(CHAR* MAC, CHAR* IP); ... 65
RTGETLASERLINK(LONG ADDRESS, LONG* VALUE); ... 66
RTGETMAXSPEED(DOUBLE* SPEED); .. 67
RTGETQUERYTARGET(LONG* INDEX); ... 68
RTGETRESOLVERS(DOUBLE* X, DOUBLE* Y); ... 69
RTGETSCANNERDELAY(LONG* DELAY); ... 70
RTGETSERIAL(LONG* SERIAL); .. 71
RTGETSETPOINTFILTER(LONG* TIMECONST); .. 72
RTGETSTATUS(LONG* MEMORY); .. 73
RTGETTABLEPOSITIONS(DOUBLE* X, DOUBLE* Y, DOUBLE* Z); ... 74
RTGETTARGET(LONG* MASK); .. 75
RTGETVERSION(CHAR* VERSION); .. 76
RTIFIO(LONG VALUE, LONG MASK); ... 77
RTELSEIFIO(LONG VALUE, LONG MASK); ... 77
RTELSE();... 77
RTENDIF(); ... 77
RTINCREMENTCOUNTER(); .. 78
RTINDEXFETCH(LONG INDEX); ... 79
RTJUMPTO(DOUBLE X, DOUBLE Y); .. 80
RTJUMPTO3D(DOUBLE X, DOUBLE Y, DOUBLE Z); .. 80
RTLINETO(DOUBLE X, DOUBLE Y); ... 81
RTLINETO3D(DOUBLE X, DOUBLE Y, DOUBLE Z); .. 81
RTLINETOXD(DOUBLE X, DOUBLE Y, DOUBLE Z, DOUBLE TX, DOUBLE TY, DOUBLE TZ, LONG MASK); . 81
RTLISTOPEN(LONG MODE); ... 82
RTLISTCLOSE();.. 82
RTLOADCALIBRATIONFILE(CONST CHAR* FILENAME); ... 83
RTMOVETO(DOUBLE X, DOUBLE Y); ... 84
RTMOVETO3D(DOUBLE X, DOUBLE Y, DOUBLE Z); ... 84
RTMOVETOXD(DOUBLE X, DOUBLE Y, DOUBLE Z, DOUBLE TX, DOUBLE TY, DOUBLE TZ, LONG MASK);
 .. 84
RTOPENCANLINK(LONG BAUDRATE); ... 85
RTPARSE(CONST CHAR* CMD); .. 86
RTPOWERPROFILETO(DOUBLE X, DOUBLE Y, CHAR* PIXELS); ... 87
RTPRINT(CONST CHAR* DATA); .. 88
RTPULSE(DOUBLE X, DOUBLE Y); .. 89
RTPULSE3D(DOUBLE X, DOUBLE Y, DOUBLE Z); ... 89
RTRESET(); .. 90
RTRESETCALIBRATION(); .. 91

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 4

RTRESETCOUNTER(); ... 92
RTRESETRESOLVER(LONG NR); .. 93
RTRUNSERVER(LONG ID, VOID* PARAMS1, VOID* PARAMS2); .. 94
RTSCANCANLINK(LONG ADDRESS, LONG NODE, LONG INDEX, LONG SUBINDEX); 95
RTSELECTDEVICE(CONST CHAR* IP); ... 96
RTSETANALOG(LONG VALUE, LONG MASK); ... 97
RTSETCANLINK(LONG NODE, LONG INDEX, LONG SUBINDEX, CHAR* DATA); 98
RTSETCFGIO(LONG NR, LONG VALUE); ... 99
RTSETCOUNTER(LONG VALUE); .. 100
RTSETFIELDSIZE(DOUBLE SIZE); ... 101
RTSETIMAGEMATRIX(DOUBLE A11, DOUBLE A12, DOUBLE A21, DOUBLE A22); 102
RTSETIMAGEOFFSRELXY(DOUBLE X, DOUBLE Y); ... 103
RTSETIMAGEOFFSXY(DOUBLE X, DOUBLE Y); .. 104
RTSETIMAGEOFFSZ(DOUBLE Z); ... 105
RTSETIMAGEROTATION(DOUBLE ANGLE); .. 106
RTSETIO(LONG VALUE, LONG MASK); .. 107
RTSETJUMPSPEED(DOUBLE SPEED); ... 108
RTSETLASER(BOOL ONOFF); .. 109
RTSETLASERFIRSTPULSE(DOUBLE TIME);.. 110
RTSETLASERLINK(LONG ADDRESS, LONG VALUE); ... 111
RTSETLASERTIMES(LONG GATEONDELAY, LONG GATEOFFDELAY); ... 112
RTSETLOOP(LONG LOOPCTR); .. 113
RTDOLOOP(); ... 113
RTSETMATRIX(DOUBLE A11, DOUBLE A12, DOUBLE A21, DOUBLE A22); ... 114
RTSETMINGATEPERIOD(LONG TIME); .. 115
RTSETOFFSINDEX(LONG INDEX); ... 116
RTSETOFFSXY(DOUBLE X, DOUBLE Y); ... 117
RTSETOFFSZ(DOUBLE Z); ... 118
RTSETOSCILLATOR(LONG NR, DOUBLE PERIOD, DOUBLE PULSEWIDTH); ... 119
RTSETOTF(LONG NR, BOOL ON); .. 120
RTSETPOWER(LONG PWR) .. 121
RTSETPOWERLEVELS(LONG PWR100, LONG PWR0); .. 121
RTSETPOWERPROFILE(CHAR* PIXELS); ... 122
RTSETPULSEBULGE(DOUBLE FACTOR); ... 123
RTSETQUERYTARGET(LONG INDEX); ... 124
RTSETRESOLVER(LONG NR, DOUBLE STEPSIZE, DOUBLE RANGE); .. 125
RTSETRESOLVERCAL(CONST CHAR* FILENAME); ... 126
RTSETRESOLVERPOSITION(LONG NR, DOUBLE POSITION); ... 127
RTSETROTATION(DOUBLE ANGLE); .. 128
RTSETSCALE(DOUBLE SCALE); .. 129
RTSETSPEED(DOUBLE SPEED); ... 130
RTSETTABLE(LONG NR, DOUBLE POSITION); .. 131
RTSETTABLEDELAY(LONG NR, LONG DELAY); .. 132
RTSETTABLELIMITSWITCHES(LONG NR, LONG MINSTOP; LONG MAXSTOP); 133
RTSETTABLEMAXSPEED(LONG NR, DOUBLE SPEED); ... 134
RTSETTABLERANGE(LONG NR, LONG TYPE, DOUBLE VALUE); ... 135
RTSETTABLESNAPSIZE(LONG NR, DOUBLE SNAPSIZE); .. 136
RTSETTABLESNAPSIZEEX(LONG NR, DOUBLE SNAPSIZE, DOUBLE CLIPSIZE); 136
RTSETTABLESPEED(DOUBLE SPEED); ... 137
RTSETTABLESTEPSIZE(LONG NR, DOUBLE STEPSIZE); ... 138
RTSETTARGET(LONG MASK); .. 139
RTSETVARBLOCK(LONG I, CHAR DATA); ... 140
RTSETWHILEIO(LONG VALUE, LONG MASK); .. 141
RTSETWOBBLE(DOUBLE DIAM, LONG FREQ);.. 142
RTSETWOBBLEEX(LONG NTYPE, DOUBLE NAMPL, LONG NFREQ, LONG TTYPE, DOUBLE TAMPL, LONG

THARM, LONG TPHASE); .. 142
RTSETWOBBLEEX(LONG TYPE, DOUBLE B, LONG B, LONG DY, DOUBLE A, LONG A, LONG DX); 142
RTSETWOBBLEMODE(LONG DIR, LONG PHASE); .. 145
RTSLEEP(LONG TIME); .. 146

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 5

RTSTORECALIBRATIONFILE(CONST CHAR* FILENAME); ... 147
RTSUSPEND(); .. 148
RTSYNCHRONISE(); ... 149
RTSYSTEMRESUME(); ... 150
RTSYSTEMSETIO(LONG VALUE, LONG MASK); ... 151
RTSYSTEMSUSPEND();.. 152
RTSYSTEMTABLEMOVE(LONG NR, DOUBLE POSITION); ... 153
RTSYSTEMTABLEMOVEREL(LONG NR, DOUBLE OFFSET); ... 153
RTSYSTEMTABLESTOP(); .. 153
RTSYSTEMUARTOPEN(LONG BAUDRATE, CHAR PARITY, CHAR STOPBITS); .. 154
RTSYSTEMUARTWRITE(LONG BYTES, CHAR* DATA); ... 155
RTSYSTEMUDPSEND(CHAR* IP, SHORT PORT, CHAR* DATA); .. 156
RTTABLEARCTO(DOUBLE X, DOUBLE Y, DOUBLE BF); ... 157
RTTABLEJOG(LONG NR, DOUBLE SPEED, LONG WHILEIO); .. 158
RTTABLELINETO(DOUBLE X, DOUBLE Y); ... 159
RTTABLELINETO3D(DOUBLE X, DOUBLE Y, DOUBLE Z); .. 159
RTTABLEMOVE(LONG NR, DOUBLE TARGET); ... 160
RTTABLEMOVETO(DOUBLE X, DOUBLE Y); ... 160
RTTABLEMOVETO3D(DOUBLE X, DOUBLE Y, DOUBLE Z); .. 160
RTUARTREAD(LONG* BYTES, CHAR* DATA); .. 161
RTVARBLOCKFETCH(LONG START, LONG SIZE, CONST CHAR* FONTNAME);..................................... 162
RTWAITCANLINK(LONG BYTENR, LONG VALUE, LONG MASK); ... 163
RTWAITIDLE(); .. 164
RTWAITIO(LONG VALUE, LONG MASK); .. 165
RTWAITRESOLVER(LONG NR, DOUBLE TRIGGERPOS, LONG TRIGGERMODE); 166
RTWAITSTALL(); ... 167
RTWHILEIO(LONG VALUE, LONG MASK); .. 168
RTDOWHILE(); .. 168
NOT SUPPORTED FUNCTIONS, KEPT FOR COMPATIBILITY. .. 169
LIBRARY FUNCTIONS : RETURN CODES .. 170

11. DOCUMENT HISTORY .. 171

CUA32-APP01: FIRST DRAFT .. 171
CUA32-APP01.1 ... 171
CUA32-APP01.2 ... 171
CUA32-APP01.3 (Q3-2021) .. 172
CUA32-APP01.4 (Q3-2022) .. 172

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 6

1. first steps

This document describes how an application can control CUA32 devices. A complete license free

software package, downloadable from the website www.newson.be, is available to bridge your

application with CUA32 deflection technology.

software package

Library files “ rhothor.dll”,”rhothorDLL.h”

Any windows application can easily setup a connection by means of this library. Source code of the

library is available for customizing or compilation for other operating systems.

Executable “rhothor.exe”

System configuration, IO’s, deflectors, table axis’s, laser types and much more can be configured

using “rhothor.exe”. The application also has a text entry box to try out library function calls. As any

other application, the executable talks with the hardware through the dynamic link library

“rhothor.dll”. A good understanding of the library functions and their impact on the hardware is key

to build an application. Not intended to be used as a final application interface, the rhothor

executable has easy to use features to fast track your application development.

10 steps towards the first marking

1: Mount the deflection head and flat field lens

2: Connect laser and deflection head with the CUA32-MST control card

3: Download and install rhothor software (www.newson.be).

4: Switch on laser and power CUA32-MST

5: Make a USB connection between host and CUA32-MST.

6: Run rhothor.exe and make a connection.

7: Pressing the “Config” tab gives access to configuration windows.

8: Set field sizes, activate deflectors and select laser type.

9: The system becomes ready to use by pressing the “Control” tab.

10: Pressing “Square Loop” and “Run” marks a square 10 times over.

Function calls needed for this marking are shown by the rhothor executable. When called from within

your application, the system will behave the same. Check your application development tool on how

to include the rhothor library files. They define the methods to command and query your laser

system. In following example, the deflectors field size was set to 100 mm. The screen print shows

how the code to mark a full-field-square looks like.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 7

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 8

2. application interfacing

The CUA32 device is connected to the host computer over USB or ethernet. Data flow over this

connection is managed by a DLL (rhothor.dll) comprising a large set of functions to query and

command the CUA32 system. Queued functions are executed on a fifo based system while

Front End
Processing Unit

CUA32-FEUSB TCP

FIFO
128 KByte

slave devices

CAN

FLASH-disk
64 MByte

CUA32-TGTTarget
mapping

FIFO
128 KByte

RAM-disk
256 KByte

Deflectors

Laser

IO's

UART (RS232)

Target
Processing Unit

CUA32-MST
master device

DLL

HOST
Application

CUA32-TGT

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 9

interrupt functions issued by the application are executed immediately. The fifo is configurable by

the application and used during marking to guarantee a constant flow of commands. When a

command list is opened in streaming mode the fifo on the CUA32 controller is extended using

memory of the host computer. When opened in compile mode the command storage is completely

done using the CUA32 systems memory. The latter allows flow commands to be added for

implementing loops and conditional processing without the need for host intervention. The

execution list remains stored in the queue memory until all iterations are processed. Interrupt

functions provide a zero-delay access to system resources allowing IO’s and process parameters

to be altered without disturbing a running job.

The CUA32-MST master controller comprises a front end and a target controller. The front end is

responsible for handling command and data streams from the host application. The target

controller holds all the logic needed to control three deflectors, three table stages, a laser and

several IO’s. The master controller can be extended with slave devices to handle more deflectors,

table stages or IO’s. Both front end and target controller have command buffers supporting

streaming and compilation mode. When correctly executed, an application can start a perpetual

command loop in one target while issuing a completely different command stream in another

target.

Besides the volatile storage area for the command lists, the masters front end controller also

comprises Flash memory formatted to 256 sectors of 256 Kbyte. 250 sectors can be used by the

application as a file system to store and index command sequences. The remaining sectors are

reserved for the operating system and configuration storage. At power-up the front-end controller

initializes all connected target controllers using information stored on these sectors. The first file

sector contains a boot start sequence. Commands thereof are executed automatically as a part of

the system boot cycle. The dll provide easy to use primitives to create and copy flash files.

The target controllers in the CUA32-SLV slave devices do not have non-volatile memory. Every

target controller needs to be initialized by the master’s front end. All slave devices must be

powered up before or together with the master device to guarantee successful booting. Besides

the program list queue-memory the target controller has a (volatile) RAM disk that can be used to

store a system font.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 10

3. deflector control

The laser beam deflecting unit is the main means for positioning the laser beam onto the

workpiece. The CUA32 controller executes commands like rtLineTo by changing the setpoints

transmitted to the deflectors. Besides the obvious connections for an X- and Y-deflector, a third

channel is provided to be used for dynamic focusing. All three deflector channels are controlled in

phase to support full 3D-marking. The CUA32 controller also comprising functionality to process

moving parts. In this case, the actual deflector positions are calculated based on both command

processing and on-the-fly position measurements (OTF X, OTF Y, OTF Z).

Image to deflector data flow

rtSetImageOffsXY

rtSetImageRotation
rtSetImageMatrix

rtSetMatrix

rtSetOffsXY

rtSetOffsIndex

rtSetImageOffsZ

rtSetOffsZ

OTF X

OTF Y

OTF Z

deflector
X

deflector
Y

deflector
Z

rtJumpTo
rtLineTo
rtArcTo
rtJumpTo3D
rtLineTo3D
...

X

Y

rtJumpTo3D
rtLineTo3D
...

Z

rtLoadCalibrationFile
rtResetCalibration
rtAddCalibrationData

Deflector Calibration

Resolver Calibration

rtSetOTF(1,...

rtSetOTF(2,...

rtSetOTF(3,...

rtSetResolverCal

flash disk

rtSetOffsIndex

setpoint
filters

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 11

Image coordinates (rtLineTo, rtArcTo,…) pass through an image transformation matrix

(rtSetImageRotation,rtSetImageMatrix) before being offset by image offset data

(rtSetImageOffset). The interpolation processor uses said transformation and offsetting when

generating the stream of setpoints. When an application invokes rtSetImageMatrix with a

determinant larger than one, coordinate data will be enlarged and execution time automatically

prolonged by the same factor. The image transformation matrix maintains the marking speed.

The output data from the interpolation processor passes through a second coordinate

transformation system. The latter (controlled by rtSetOffsXY,rtSetMatrix,…) is commonly used to

align the deflection system with the axis system of the outside world. It scales the coordinates from

the stream on a sequential basis. If the transformation matrix has a determinant larger than 1, the

actual speed will be higher by the same amount. The system transformation matrix maintains the

execution time. The latter can be important when an application needs to run the same job with

different scaling’s simultaneously on several targets

The resulting setpoint streams contain high frequency components that are hard to handle by the

deflectors. Limited stiffness of mirror and mechanics can induce a ripple style behavior during a

move. When used to drive RLA, RTA and CYA deflectors, the CUA32 controller uses switchable

setpoint filters to improve track quality in high frequency applications. By limiting the bandwidth of

the setpoint signal, current spikes inside the deflector are reduced without changing its dynamics.

Knowledge of this filter and his configuration is important for understanding the values that have to

be used in dll-function rtSetLaserDelay. When used with a data convertor RTBE-XY2 and third-

party scanners, the setpoint low pass filters are disabled. The time constants are set to zero and

setpoints are transmitted as is without any bandwidth limitation.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 12

4. deflector calibration

Deflection systems suffer from positional errors. The CUA32 systems handle these errors by counter

steering during the movement of the laser beam.

mark square and measure

The rhothor configuration software provides means for easy calibration. First step is setting the

calibration size (“Config tab”). This value should be at least equal with the area actually used by

the application. A calibration figure can be generated into the rhothor script editor by pressing

“Calibration” button (“Control/Script” tab). The figure is a square with vertical and horizontal center

lines covering the full calibration size. A small triangle in the center defines the axis system. After

marking (press “Run”), it can be measured. The actual sizes can be entered in the

“Control/Calibration/XY” tab after pressing the “Edit” button. Pressing “Add” will update the targets

calibration. Like any other application, rhothor uses the rtAddCalibrationData function for

uploading the data. A temporary file “rhothor.tmp” is created for this purpose. When “Add” returns,

the file still exists and can be loaded into a text editor for evaluation.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 13

In this example the target’s field size was set to 100 and the calibration size to 80. After changing

the left top edit box from 40 to 45 and pressing “Add” the calibration was changed and now looks

like:

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 14

mark fiducials and measure

The CUA32 controller maps its total scan field (field size) with an orthogonal grid of 33 by 33 points

to implement the calibration math. Offset X-, Y- and Z-values are stored for every point. The flash of

the CUA32-MST master devices contains eight of those vector sets, one for each target device.

Marking an array of fiducials and measuring their positions is a common way to quantify the image

distortion. Any number between 3 by 3 to 33 by 33 fiducials may be chosen. The application needs

to compile the measurements into a calibration data text file. The data file must comprise a header

declaring calibration size and number of calibration points followed by array data. All dimensions,

coordinates and offsets are in mm. The function rtAddCalibrationData remaps the data stored in

said file and updates the calibration. Remapping is needed because the number of fiducials marked

and measured to gather the distortion data is likely to be different than 33 by 33. Furthermore, the

calibration size will likely be smaller than the field size. The field size of a marking unit is the result

of the angular range of the deflectors combined with the focal length of the optics while the

calibration size is the applications actual working area.

Generating a calibration is an iterative process and needs a few iterations. A single shoot and

measure sequence is unlikely sufficient to do the job. Not all the runs need to be done with the same

number of calibration points. It is a common practice to start the first calibration run with 3*3

calibrations points and increase the number of calibration points as the iteration progresses.

CUA32 devices support full 3D marking. A dynamic beam expander can easily be constructed

using an ELA-TR4 actuator. By changing the distance between two lenses, their combined focal

length can be altered allowing the deflector system to change its focal plane. Gathering offset data

should be done on two Z levels to obtain full 3D calibration.

2D calibration data file

// HEADER: sizes in mm

// ARRAY DATA:

// actual position– ideal position (mm) for every fiducial

// starting at left bottom up to right top, X direction first

// z calibration data is optional

X:calibration_size;samples // header

Y:calibration_size;samples // header

(dx;dy[;dz]);...;(dx;dy[;dz]) // array data

EOF

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 15

The “rhothor.tmp” calibration data file created in example of “mark square and measure”:

X:80.000;3;

Y:80.000;3;

(0.000;0.000);(0.000;0.000);(0.000;0.000);

(0.000;0.000);(0.000;0.000);(0.000;0.000);

(-5.000;0.000);(0.000;0.000);(0.000;0.000);

1 2

CalibrationSizeX

C
a

lib
ra

ti
o

n
S

iz
e

Y

exact position

actual
position

Nx

Nx+1

Nx calibration points

Ny calibration points

Nx*Ny

X:CalibrationSizeX;Nx

Y:CalibrationSizeY;Ny

=

Target X
CalibrationTable
33 x 33 x 8

CUA32-FE Flash

rtAddCalibrationData

...;(ErrX_Nx*Ny; ErrY_Nx*Ny)

(ErrX_1; ErrY_1);(ErrX_2; ErrY_2);...

ErrX = actual-exact

ErrY = actual-exact

2D calibration
data file

Fieldsize

X

Y

rtSetTarget

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 16

3D calibration data file

X:x_calibration_size;x_samples // header

Y:y_calibration_size;y_samples // header

Z:Z1,Z2 // header

(dx;dy[;dz]);...;(dx;dy[;dz]) // array data at Z=Z1

(dx;dy[;dz]);...;(dx;dy[;dz]) // array data at Z=Z2

EOF

X

Z

Y1 2 Nx

exact position

actual
position

 ErrZ =
actual-exact

 ErrY =
 actual-exact

ErrX = actual-exact

X:CalibrationSizeX;Nx
Y:CalibrationSizeY;Ny
Z:Z1;Z2
(Z1_ErrX_1;Z1_ErrY_1;Z1_ErrZ_1);
(Z1_ErrX_2;Z1_ErrY_2;Z1_ErrZ_2);...
...;(Z1_ErrX_Nx*Ny;Z1_ErrY_Nx*Ny;Z1_ErrZ_Nx*Ny)
(Z2_ErrX_1;Z2_ErrY_1;Z2_ErrZ_1);
(Z2_ErrX_2;Z2_ErrY_2;Z2_ErrZ_2);...
...;(Z2_ErrX_Nx*Ny;Z2_ErrY_Nx*Ny;Z2_ErrZ_Nx*Ny)

CalibrationData

Z2

Z1

Nx*Ny

Nx+1

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 17

beacon fully automatic calibration

Previous methods involve marking and measuring. While commonly used and known, time and

waste materials are needed to achieve calibration. The rhothor software allows connection with an

optional beacon calibration system. Said system supports fully automatic 2D calibration using the

actual laser light. There is no need to compile files, to measure are even to mark. After the beacon

calibration device is placed in the process area of the deflection head, it handles the entire calibration

process.

16/18 bit

The calibration is stored on flash as arrays of 16-bit offset vectors. Setpoints send to deflectors are

formatted as 24-bit integer values. For compatibility with previous controller versions, CUA32

controllers can be configured to 16-bit-align or to 18-bit-align the calibration data. While the 16-bit

alignment allows for dramatic calibrations, mapping the values on 18 bit increases the calibration

accuracy. Resolution selection for the calibration data must be done using the rhothor configuration

software prior to calibration. This resolution selection is only available for X- and Y-channel. The Z-

axis always uses the 16-bit alignment.

24 bit uncalibrated setpoint

16 bit calibration math

B0

16 bit calibration offset, msb aligned, zero padded

B23

24 bit calibrated setpoint

24 bit uncalibrated setpoint

18 bit calibration math

16 bit calibration offset, right shifted 2 bits, zero padded

24 bit calibrated setpoint

0B15 B0

B23

B23

B23

B15B15 B15

B0

B0

B0

B0

0000000

0 0 0 0 0 0

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 18

5. laser control

During processing, the CUA32 controls deflectors and laser. Operational moves have to be done

with laser activated while idle moves are executed with laser switched off.

gate mode

The easiest way to control a laser is by means of a gate signal. Whenever the gate signal is active,

the laser is emitting power. While this approach is straight forward additional laser control modes

are supported. Selection between said mode is done using the rhothor configuration software

while library functions (rtSetOscillator, rtSetLaserFirstPulse, rtSetLaserTimes,…) provide means to

set process parameters by the application.

burst mode

Most lasers do not source a constant optical output but run sequences of high energy optical

pulses. The frequency of said pulses can be generated internally or applied by an external signal.

For this purpose, the CUA32 has a programmable oscillator who can be configured to generate

pulses whenever laser energy is needed. Because this oscillator uses the same clock frequency

as the command processor, the phase relation between pulses and deflector movements is

constant. This means that, between successive markings, the actual laser dots on the workpiece

will always be on the same location. When the pulse frequency is generated by electronics inside

the laser this will not be case by lack of synchronization. The laser has its digital logic running on

its own clock. Furthermore, the CUA32 controller will resynchronize the oscillator on every rising

flank of the gate. When parallel lines are lasered, the laser dots will form a nice square like array.

The latter provides better and more homogenous laser hatching results.

CO2 mode

In this mode, the CUA32 controller generates pulses all the time regardless of the laser state. The

gate signal is used to change the pulse width. This control mode is commonly used with CO2

lasers. Whenever the laser must be switched on the pulse duty cycle (= width/period) defines the

optical output energy. When idle, the laser still gets (tickle) pulses. However, these pulses have a

very small pulse width and allow the laser to generate just enough energy to sustain readiness.

burst with speed modulated period

Some processes have a very tight operational window. The optical energy density needs to be as

constant as possible over the entire lasered line. Said density is defined by laser output power and

track speed. However due to deflector delays the latter can vary. Extending lines with idle up and

down ramping is a common way to guarantee that the track speed is constant whenever the laser

is activated. This solution comes with a cost of increased processing time and software overhead.

The pulse oscillator on the CUA32 controller supports speed modulation as a zero-cost alternative.

When cornering, the track speed will go down due to the rounding effect. The CUA32 controller will

automatically reduce the pulse frequency to counter act and keep the inter dot distance on the

track constant. As in burst mode, the pulse-period and width are set by invoking library function

rtSetOscillator(3,..). The selected period will be linked to the active track speed (set by last call

rtSetSpeed). Whenever the actual speed reduces, the period will automatically be increased to

guarantee constant dot pitch on the workpiece.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 19

laser link

For some lasers, optional devices are available to ease interfacing. Lasers needing TTL like

signals to set power, query alarms, controlling peripherals often end up with high pin count

connectors. Laser links are smart connectors comprising electronics to support the laser side

interfacing while exchanging laser data with the CUA32 controller over a single twisted pair cable.

speed modulated puls frequency

time

X

time

time

time

Y

speed x deflector

speed laser spot on workpiece

speed y deflector

time

time

puls period automatically increased
to compensate speed reduction at cornering

movement x deflector

movement y deflector

constant period:
reduced dot spacing
at corners

speed modulation:
constant dot spacing
at corners

normal burst mode (constant period)

speed modulation

expected movement of the laser spot
on the workpiece at corners

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 20

on-off delays

Whatever laser mode is selected, in all cases the laser control signals (gate, burst...) need to be

synchronized with the actual mirror positioning. Time delay induced by the deflectors and their

setpoint filters can be compensated by shifting the laser control signals. Using the library function

rtSetLaserTimes, laser on delay and laser off delay can be set independently. In most cases both

delays can be calculated as follows:

GateOnDelay = GateOffDelay = deflector delay +time constant setpoint filter.

power

Besides changing the burst frequency, output power of a laser can often be altered by changing
the optical pump energy. How lasers work lies well beyond the scope of this manual. However,
some understanding is needed. It’s obvious that with a pulsed laser, the output power is a linear
function of applied burst frequency. Assuming that pulse energy remains constant, doubling its
frequency doubles the output power. Sadly, in most cases, said assumption is not valid.
Furthermore, the application parameters may require a specific dot distance on the workpiece
limiting the range in which one can set the burst frequency. Most lasers have an additional analog
input to control the pump energy. This input alters the energy of a laser pulse not it’s frequency.
The CUA32-TGT controller features a dedicated analog output for this purpose. Output power of
CO2 laser is commonly controlled using duty cycle modulation of the burst signal (PWM), so no
additional resources are needed.

X axis rhothor deflector movement and laser gate control

time

X

Tcst setpoint filter deflector delay

setpoint send to deflector

actual mirror movement

setpoint parsed from command rtLineTo(x1,y0)

setpoint
low pass filter

setpoint

deflector delay

time

gate

t0

t < t0 : the deflector is stopped at position (x0,y0)
t = t0 : the CUA32 starts executing rtLineTo(x1,y0)
t = t1 : command rtLineTo(x1,y0) is completely executed

t1

laser off delay = Tcst low pass + deflector delay

laser on delay = Tcst low pass + deflector delay

x0

x1

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 21

Functions like rtSetPower, rtSetPowerLevels, rtSetPowerProfile,… provide means to control said
laser pump energy, independent of laser type. So, marking jobs can transferred from one system
to another, without the need to adapt commands therein to the applied laser system.
Available means to control power outputs:

• IO5 can configured as a power-output (gate- and burst-mode)

• Oscillator 1 pulse with modulation (CO2-mode)

• Invoking set power command on a Laser-link
Based on the configuration, an rtSetPower command will automatically select between them. On a
CO2-laser, the command will alter the pulse width while on a burst laser, the analog output will be
used. Whenever IO5 is configured for power-output, pulse width modulation (CO2 mode) or
invoking laser link command become suppressed.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 22

6. on-the-fly control

When a workpiece moves during its marking, the deflection system needs to compensate said

movements for correct printing. Any position sensing device outputting quadrature signals can be

connected with the CUA32-controller. The CUA32-TGT device comprises on-the-fly state

machines able to integrate the applied position signals. Based on their sequence, any flank

measured on either A- or B-signal will result in incrementing or decrementing the on-the-fly

position counter.

When position sensing is not available, a constant speed mode can serve as a position estimation.

This mode is particularly useful when marking components on moving trays. The speed with which

the tray moves during the marking is likely to be constant. When needed, an IO hardware trigger

can be added for better positioning the marking onto the work piece.

A third source that can serve for position sensing is a write through of the table position. A CUA32-

controller is a full 6 axis system able to control 3 table stages. The on-the-fly state machines can

be set so their outputs are overwritten by said table setpoints.

X on the fly controller

MUX

rtSetCfgIO(1,...
rtSetCfgIO(9,...

rtSystemSetResolverSpeed(1,...

U/D

OTF X
position
counter

rtSetResolver(1,...
rtSetResolverPosition(1,...
rtSetResolverPositionRel(1,...

PHASE A/B input OTF XMUX

rtSetCfgIO(9,...

Table X
position
counter

Y on the fly controller

MUX

rtSetCfgIO(3,...
rtSetCfgIO(11,...

rtSystemSetResolverSpeed(2,...

U/D

OTF Y
position
counter

rtSetResolver(2,...
rtSetResolverPosition(2,...
rtSetResolverPositionRel(2,...

PHASE A/B input OTF YMUX

rtSetCfgIO(11,...

Table Y
position
counter

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 23

Unlike X- and Y-channel, the on-the-fly state machine for the Z-channel only supports the table
position write through mode.

Z on the fly controller

OTF ZMUX

rtSetCfgIO(13,...

Table Z
position
counter

0

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 24

7. on-the-fly resolver calibration

When resolver inputs are used to determine the position of the deflection system in relation to the

workpiece, errors can be introduced by sensor linearities and alignments. The CUA32-TGT

controller comprises a tool to map out those errors. The method rtSetResolverCal loads offset

data stored in FileName into the selected target controller. Said offset data will be subtracted from

the resolver counts during on-the-fly operation. Unlike deflector calibration, resolver calibration is

not stored in system flash and needs to be uploaded by the application as part of a boot cycle.

Resolver calibration data file
// HEADER: sizes in mm

// ARRAY DATA:

// actual position fiducial as seen by deflector when

// deflection head is positioned right above said fiducial

// starting at left bottom up to right top, X direction first

X:left;right;Xsamples // header

Y:bottom;top;Ysamples // header

(x1;y1);...;(xn;yn) // array data

EOF

X

Y

4321 Nx

Nx*Ny

positive table X direction

p
o

s
it
iv

e
 t

a
b

le
 Y

 d
ir

e
c
ti
o

n

deflection system

resolver calibration

center deflector
field size (0,0)

fiducial

(xi,yi)

calibration plate on moving table

(right,top)

(left,bottom)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 25

An example:

Assume that, in previous drawing, the fiducial coordinates beneath the deflector equal (1000,500).

The X resolver counted to 1000 and the Y resolver to 500. The controller assumes that the

deflector is positioned right above the fiducial. The X count, 1000, appeared to be too high, the

correct X count should be 998. The Y count, 500, appeared to be too low, the correct Y count

should be 501. Notice that in this the setup, using a fixed deflection system and a moving

workpiece, the positive on-the-fly count directions are opposite to the image coordinate system. If

the controller uses the OTFC (on-the-fly counts) as is, a rtJumpTo(1000,500) command will

position the deflector system dead center. Markings will be error wise 2 mm to the left and 1 mm

too high.

By defining “error = OTFC - correct count” and measure and map said errors , the CUA32-TGT

controller is able to calculate the correct part position by subtracting the error data from the on-the-

fly-counts:

“correct position = OTFC- error = OTFC –(OTFC-correct-count)= correct count”

In this case the on-the-fly count error equals (2,-1) when the workpiece is positioned at (1000,500).

After compensation of the on-the-fly-counts the position is measured at (998,501). A

rtJumpTo(1000,500) will position the deflector system at (1000-998,500-501).

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 26

8. table axis control

The CUA32 is a six-axis numerical control system. Besides three deflectors, three table stages can

be controlled. Laser beam deflection systems are very fast but have a limited field size. When larger

areas are needed, a mechanical table is used to change the position of the deflection system in

relation with the workpiece. A machine comprising a XYZ table and a 3D-deflection system can

process parts as large as the travel range of its table at a speed not limited by it. To control such a

machine, the application needs to handle six axes.

In normal mode, table and deflector are controlled by their own commands. Each having their own

coordinate system. Image functions (rtLineTo, rtArcTo...) will invoke a deflector movement while

table functions (rtTableMove, rtTableLineTo...) will position the table. Image coordinates pass

through several data transformation steps before being transferred to the deflectors. Their values

are shifted and rotated as requested by preceding functions (rtSetImageMatrix, rtSetOffsXY,

rtSetMatrix,...). Coordinates used in table functions are send to the stepper controllers as is, without

any offsetting nor rotation. Calling "rtSetOffsXY" will offset the coordinates of a "rtMoveTo" function

but will have no effect on a "rtTableMoveTo" function. When controlled separately, the application

needs to make sure that table is put in position before starting the deflectors. To avoid clipping, the

graphical content processed by the deflection head must fit within its limited working area. The latter

is straight forward when only small isolated images have to be marked. Processing images larger

than the field size of the deflection head imposes challenges.

To reduce application overhead, the CUA32 device supports a hybrid control mode. In this mode,

the table and deflectors share the image coordinate system. A rtLineTo will mark using both

deflectors and steppers at the same time. The long straights will be done using the table, while the

smaller graphical data will be handled by the deflectors. A hysteresis scheme avoids unnecessary

table movement. Because the image coordinate system is used, the positions are rotated and shifted

before being send to the hybrid axes. The CUA32 control board uses the available on-the-fly

hardware to adjust the deflector setpoints. Both open loop and closed loop style operations are

supported. In open loop, the on-the-fly position values reflect their respective table setpoints. When

a position feedback mechanism is available, its quadrature signals (PHASE A, PHASE B) can be

used to increase overall accuracy. The application can activate/deactivate this hybrid mode at any

time (rtSetTableSnapSize, rtSetTableSnapSizeEx).

The CUA32-TGT device comprises three table axis controllers. Third party axis drivers can be

controlled through PULS and DIR signals. The CUA32 controller comprises all the logic needed for

smooth ramping by limiting frequency changes on said signals.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 27

PULS (IO9)

DIR (IO10)

U/D

MUX
Table X
setpoint

Table X
position
counter

rtSetTableRange(1,...
rtSetTableLimitSwitches(1,...
rtSetTableMaxSpeed(1,...

rtSetTableSnapSize(1,...

rtSetTable(1,...

rtTableMove(1,...
rtTableLineTo(...
rtTableMoveTo(...
rtTableLineTo3D(...
...

Table X
hybrid

0

X axis table controller rtSetTableStepSize(1,...

rtSetTableDelay(1,...

PULS (IO11)

DIR (IO12)

U/D

MUX
Table Y
setpoint

Table Y
position
counter

rtSetTableRange(2,...
rtSetTableLimitSwitches(2,...
rtSetTableMaxSpeed(2,...

rtSetTableSnapSize(2,...

rtSetTable(2,...

rtTableMove(2,...
rtTableLineTo(...
rtTableMoveTo(...
rtTableLineTo3D(...
...

Table Y
hybrid

0

Y axis table controller rtSetTableStepSize(2,...

rtSetTableDelay(2,...

PULS (IO13)

DIR (IO15)

U/D

MUX
Table Z
setpoint

Table Z
position
counter

rtSetTableRange(3,...
rtSetTableLimitSwitches(3,...
rtSetTableMaxSpeed(3,...

rtSetTableSnapSize(3,...

rtSetTable(3,...

rtTableMove(3,...
rtTableLineTo3D(...
rtTableMoveTo3D(...
...

Table Z
hybrid

0

Z axis table controller rtSetTableStepSize(3,...

rtSetTableDelay(3,...

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 28

When a CUA32-TGT device controls a table axis, the respective IO pins must be allocated. The

following screen-print from the rhothor executable shows a configuration wherein the CUA32-TGT

is set to control the X axis through IO9 and10 and the Y axis through IO11 and 12.

This configuration only allocates the IO pins. Before a table axis can be used, following data needs

to initialized:

data description available function

step size How much does the table move when

one pulse is applied?

rtSetTableStepSize

direction In which direction does the table move

when the “DIR” pin is low and pulses are

applied?

rtSetTableStepSize

maximal speed What is the maximal pulse frequency

that can be applied?

rtSetTableMaxSpeed

maximal

acceleration

How fast can we accelerate from stand

still to maximal speed

rtSetTableDelay

limit switches Does the table have limit or reference

switches?

rtSetTableLimitSwitches

table ranges Defines the field size of the table axis. rtSetTableRange

The table axis initialization can be done by the application or at power up using the boot start

executable. When the “Boot Wizard” button is pressed, the rhothor executable loads the “Script” edit

box with the commands needed to initialize the axes. Depending on the axis setup some commands

can be left out or additional commands must be added. In any case, configuring an axis starts with

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 29

defining its step size and direction. As long as rtSetTableStepSize for the axis isn’t invoked all other

table commands are ignored. Fill in the question marks in the command sequences and press the

“Run” button to program the boot start file on flash. Press the “Reset” button to actually run the script.

Even when using the boot start file is not desired, this tool can be used as a source code generator

for the application. The code lines in the “Script” edit box can be copied through the clip board into

any development environment.

The CUA32 controls XYZ stages in a fashion that is similar than deflectors. When table instructions

(rtTableMoveTo…) are parsed, the table setpoints change and step pulses are invoked. As with

deflectors, low pass filtering is used to limit frequency changes. The applied step frequency needs

to rise slowly so the steppers can keep up. As a deflector, they need time to accelerate the load

during the movement. By low pass filtering the steppers setpoint explicit ramping math can be

avoided. The resulting straight forward command sequencing is a huge advantage. Command

chains could stall in streaming mode. The low pass filtering avoids table hard stops when this

happens. The application needs to set several table parameters. Table speed and table delay are

correlated. Table delay (rtSetTableDelay) is the time the steppers get to achieve their maximal

speed (rtSetTableMaxSpeed).

When the CUA32 controller is used exclusive to control table stages, understanding position errors

induced by the low pass filter becomes important. When a command like rtTableMoveTo terminates,

the table isn’t at the destination location. The low pass filter delays the axis setpoint signal. The table

behaves like a deflector, but the time constant (rtSetTableDelay) is much higher. When accurate

tracking of setpoints is required, the application can use similar tools as with deflectors (rtSleep,

rtBurst) to improve cornering. When the XY-stage is used for circle tracking, the diameter of the

setpoint circle can be slightly increased to compensate for the attenuation effect. Circle markings

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 30

could also be preceded by an arc move to improve the roundness. The need of all this depends on

the speed and the bandwidth at which the application wants to control the table. When the system

has deflectors all said errors can be autocorrected using the on board on-the-fly support.

open loop tracking

Any XY-stage driven by steppers can be seen as a zero-delay system. Any applied PULS signal is

executed by the stepper in theory without delay. Said pulses also need to be applied timely by the

controller. When the step frequency needs to be altered, this alteration needs to be smooth

allowing the motor to keep up. The table actual setpoint can be considered equal to its setpoint

which can be used as on the fly inputs during marking. The Following screen-print shows a

configuration wherein the on-the-fly positions will be overwritten by table positions.

When image processing should be done using both deflectors and table stages, hybrid marking

can be switched on and parameterized. This implementation of hybrid marking is called open loop

because there is no actual feedback. The on-the-fly positions are overwritten with table setpoint

positions. There is no fail safe in case the stepper loses steps neither is there a compensation for

friction induced backlash.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 31

closed loop tracking

Servo drives will likely add an additional delay. As such the generated pulses cannot be used to

estimate the on-the-fly position and actual measurements are needed. Most servos provide access

to phase shifted signals for position tracking. When not, additional measuring strips should be

mounted. The quadrature signals generated by said systems can be connected the CUA32 device

to serve as on-the-fly inputs.

When image processing should be done using both deflectors and stages the resolver input and

hybrid marking can be switched on and parameterized. This implementation is called closed loop

hybrid marking because the CUA32-controller uses the measured actual position as input. This

closed loop hybrid solution comprises more wiring but is likely to have a higher accuracy.

X axis with closed loop hybrid support

CUA32-controller

third party
three phase
linear motor driver

actuator

quadrature position A

IO9
PULS

IO10
DIR

linear table stage

IN1
A

IN2
B

limit switch limit switch

IN13

IN14

optional signal
convertors
and isolators

quadrature position B

Vio

Vio

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 32

processing on-the-fly resolver calibration

When combined with on-the-fly, the CUA32-TGT is hardware wired to see the on-the-fly input and

table axis as one coordinate system. They may have different step sizes and reference points but

the controller expects that positions shown on both table position counter and on-the-fly input

counter should be about the same. When resolver calibration is loaded, its mapped error data will

be added to the setpoints in all table commands (rtTableLineTo, rtTableArcTo,..) before execution

to counter offset the resolver errors.

Assume the example as illustrated in chapter 7 (on-the-fly resolver calibration) comprising X-Y

table stages in open loop tracking (overwriting on-the-fly positions with table positions). The

application wants to set the laser spot at (1000,500). For said position, the loaded resolver

calibration map returns offset vector (2,-1).

Command sequence:

…

rtSetOTF(1,0); // switch off on-the-fly tracking X-axis

rtSetOTF(2,0); // switch off on-the-fly tracking Y-axis

rtTableMoveTo(1000,500), // table and on-the-fly resolver count will go to (1002,499)

rtSetOTF(1,1); // switch on on-the-fly-tracking X-axis

rtSetOTF(2,1);); // switch on on-the-fly tracking Y-axis

rtJumpTo(1000,500); // scanner will jump to its center position

…

Why the latter:

As illustrated by the schematic in chapter “deflector control”, the resolver positions including their

errors are compensated by the deflectors. Tanks to counter steering the table with the resolver

error data, the calibrated resolver count equals the parameters of rtTableMoveTo when positioned.

deflector = setpoint command – (on the fly offset count - resolver calibration)

Xdeflector = 1000 - (1002-2) = 0

Ydeflector = 500 - (499+1) = 0

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 33

9. interlock

THE INTERLOCK FUNCTIOANLITY PROVIDED BY THE CUA32 DEVICES MAY NOT BE USED

AS A SAFETY SYSTEM.

It may be desirable to stop a marking when a table axis hits a limit switch, a deflector reports an

error or some other signal becomes invalid. The application can define a system interlock through

the functions rtSetWhileIO and rtSystemSetWhileIO. When the go directives or no longer met, the

system automatically stops. After solving the issue, the interlock must be rearmed by calling rtAbort

or rtReset. Only persistent function calls can be used during an interlock error.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 34

10. library functions

The applicability of the DLL functions depends on the state of the CUA32 device. Some functions

are queued and must be embedded in a rtListOpen/rtListClose sequence while others can be

called at any time. Commands are binary formatted for exchange with the hardware. While most

are 8 bytes long, detailed knowledge of their sizes could be of interest when queued sequences

are to be stored locally. The CUA32-MST device can be extended with several slave devices. The

DLL uses rtSetTarget and rtSetQueryTarget as route directives for the functions. Some are

dedicated to the CUA32-FE controller and some are routed to all CUA32-TGT devices regardless

of target setting. Following table gives an overview of applicability, size, target aiming and scope

for each library function.

applicability

Powered The function is applicable whenever the system is switched on.

Connected The function is applicable whenever the system is connected with the

application.

Idle The function is applicable when the system is connected and idle.

Closed The function is applicable when the system is connected and the command

queue is closed. This differs from the idle state because the system could

still be executing the previous loaded commands.

compile or stream The function is applicable when the system is connected and a command

queue was opened using rtListOpen(x) or rtFileOpen(x).

Compile The function is applicable when the system is connected and a command

queue was opened in compile mode rtListOpen(1), rtListOpen(3) ,

rtListOpen(5) or rtFileOpen(x)

target aiming

FE The function is being processed by the CUA32-FE controller.

all The function is forwarded to all target controllers.

mask The function is forwarded as specified by the last call rtSetTarget(mask). Target

indexes that have a 0 bit in mask will ignore the command. Bit 0 in mask

corresponds with target 1, bit 1 with target 2 and so on.

single The function is forwarded as specified by the last call rtSetTarget(mask). However

only the least significant non-zero bit in mask will select a target. All other one bits

will be ignored.

FE/mask Execution is allocated based on the used list mode. When called within mode 1 or 3,

execution is handled by the CUA32-FE controller. When called within mode 5 the

function is allocated as specified by the last call rtSetTarget(mask).

query The function queries the target selected by the last call rtSetQueryTarget.

scope

abortable The function stops on interlock errors and after calling rtAbort().

persistence The function tries to execute regardless the interlock state.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 35

function table

Name applicability size target scope

rtAbort connected all persistent
rtAcceptData compile or stream 8 mask abortable
rtAddCalibrationData idle single persistent

rtArcMoveTo compile or stream 16 mask abortable
rtArcTo compile or stream 16 mask abortable
rtBurst compile or stream 8 mask abortable
rtCharDef compile 16 mask abortable
rtCircle compile or stream 16 mask abortable
rtCircleMove compile or stream 16 mask abortable
rtDoLoop compile 8 FE/mask abortable
rtDoWhile compile 16 FE/mask abortable
rtElse compile 8 FE/mask abortable
rtElseIfIO compile 24 FE/mask abortable
rtEndIf compile 0 FE/mask abortable
rtEraseFromFlash idle FE persistent
rtFileClose compile FE persistent
rtFileCloseAtHost compile FE persistent
rtFileCloseAtIndex compile FE persistent
rtFileDownload Idle FE persistent
rtFileFetch compile or stream FE persistent
rtFileOpen closed FE persistent
rtFileUpload idle FE persistent
rtFileUploadAtIndex idle FE persistent
rtFontDef compile 2056 mask abortable
rtFormatFlash idle FE persistent
rtGetAnalog connected query persistent
rtGetCanLink connected FE persistent

rtGetCfgIO connected query persistent
rtGetCounter connected query persistent
rtGetDeflReplies connected query persistent
rtGetFieldSize connected query persistent
rtGetFieldSizeZ connected query persistent
rtGetFileIndex connected FE persistent
rtGetFirstFreeUSBDevice powered FE persistent
rtGetFlashFirstFileEntry connected FE persistent
rtGetFlashMemorySizes connected FE persistent
rtGetFlashNextFileEntry connected FE persistent
rtGetID connected FE persistent
rtGetIO connected query persistent
rtGetIP connected FE persistent
rtGetLaserLink idle query persistent
rtGetMaxSpeed connected query persistent
rtGetNextFreeUSBDevice powered FE persistent
rtGetQueryTarget connected FE persistent

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 36

Name applicability size target scope

rtGetResolvers connected query persistent
rtGetScannerDelay connected query persistent
rtGetSerial connected FE persistent
rtGetSetpointFilter connected query persistent
rtGetStatus connected FE persistent
rtGetTablePositions connected query persistent
rtGetTarget connected FE persistent
rtGetVersion connected FE persistent
rtIncrementCounter compile or stream 8 mask abortable
rtIndexFetch compile or stream 8 FE abortable
rtIfIO compile 16 FE/mask abortable
rtJumpTo compile or stream 8 mask abortable
rtLineTo compile or stream 8 mask abortable

rtLineTo3D compile or stream 16 mask abortable

rtLineToXD compile or stream 24 mask abortable
rtListClose compile or stream all abortable
rtListOpen closed all persistent
rtLoadCalibrationFile idle single persistent
rtMoveTo compile or stream 8 mask abortable

rtMoveTo3D compile or stream 16 mask abortable

rtMoveToXD compile or stream 24 mask abortable
rtOpenCanLink compile or stream 48 FE abortable

rtParse x x x
rtPowerProfileTo compile or stream 8+n mask abortable

rtPrint compile or stream 8+n mask abortable

rtPulse compile or stream 8 mask abortable
rtReset connected all persistent
rtResetCalibration idle single persistent
rtResetCounter compile or stream 8 mask abortable
rtResetResolver compile or stream 8 mask abortable
rtRunServer x x x
rtScanCanLink compile or stream 8 FE abortable
rtSelectDevice powered FE persistent
rtSetAnalog compile or stream 8 mask abortable
rtSetCanLink compile or stream 8+n FE abortable

rtSetCfgIO compile or stream 8 mask abortable
rtSetCounter compile or stream 8 mask abortable
rtSetFieldSize compile or stream 8 mask abortable
rtSetImageMatrix compile or stream 32 mask abortable

rtSetImageOffsRelXY compile or stream 8 mask abortable
rtSetImageOffsXY compile or stream 8 mask abortable
rtSetImageOffsZ compile or stream 8 mask abortable
rtSetImageRotation compile or stream 8 mask abortable
rtSetIO compile or stream 8 mask abortable
rtSetJumpSpeed compile or stream 8 mask abortable
rtSetLaser compile or stream 8 mask abortable
rtSetLaserFirstPulse compile or stream 8 mask abortable
rtSetLaserLink compile or stream 8 mask abortable
rtSetLaserTimes compile or stream 8 mask abortable

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 37

Name applicability size target scope

rtSetLoop compile 8 FE/mask abortable
rtSetMatrix compile or stream 32 mask abortable
rtSetMinGatePeriod compile or stream 8 mask abortable
rtSetOffsIndex compile or stream 8 mask abortable
rtSetOffsXY compile or stream 8 mask abortable
rtSetOffsZ compile or stream 8 mask abortable
rtSetOscillator compile or stream 8 mask abortable
rtSetOTF compile or stream 8 mask abortable
rtSetPower compile or stream 8 mask abortable

rtSetPowerLevels compile or stream 8 mask abortable

rtSetPowerProfile compile or stream 8 mask abortable

rtSetPulseBulge compile or stream 8 mask abortable
rtSetQueryTarget connected FE persistent
rtSetResolver compile or stream 8 mask abortable
rtSetResolverCal idle single persistent

rtSetResolverPosition compile or stream 8 mask abortable
rtSetResolverRange compile or stream 8 mask abortable
rtSetRotation compile or stream 8 mask abortable
rtSetScale compile or stream 8 mask abortable

rtSetSpeed compile or stream 8 mask abortable
rtSetTable compile or stream 8 mask abortable
rtSetTableDelay compile or stream 8 mask abortable
rtSetTableLimitSwitches compile or stream 8 mask abortable
rtSetTableMaxSpeed compile or stream 8 mask abortable
rtSetTableRange compile or stream 8 mask abortable
rtSetTableSnapSize compile or stream 16 mask abortable

rtSetTableSnapSizeEx compile or stream 16 mask abortable
rtSetTableSpeed compile or stream 8 mask abortable
rtSetTableStepSize compile or stream 8 mask abortable
rtSetTarget connected FE persistent
rtSetVarBlock compile or stream 8 mask abortable
rtSetWhileIO compile or stream 8 mask abortable
rtSetWobble compile or stream 24 mask abortable
rtSetWobbleEx compile or stream 24 mask abortable
rtSetWobbleMode compile or stream 8 mask abortable
rtSleep compile or stream 8 mask abortable
rtStoreCalibrationFile idle single persistent
rtSuspend compile or stream 8 mask abortable
rtSynchronise compile or stream 64 all abortable

rtSystemResume connected all persistent
rtSystemSetIO connected mask persistent
rtSystemSuspend connected all persistent
rtSystemTableMove connected all abortable
rtSystemTableMoveRel connected all abortable

rtSystemTableStop connected all persistent
rtSystemUartOpen connected FE persistent
rtSystemUartWrite connected FE persistent
rtSystemUDPsend connected FE persistent
rtTableArcTo compile or stream 16 mask abortable

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 38

Name applicability size target scope

rtTableJog compile or stream 8 mask abortable
rtTableLineTo compile or stream 8 mask abortable
rtTableMove compile or stream 8 mask abortable
rtTableMoveTo compile or stream 8 mask abortable
rtUartRead connected FE persistent
rtVarBlockFetch compile or stream 8 FE abortable
rtWaitCanLink compile or stream 8 FE abortable

rtWaitIdle compile or stream 8 single abortable

rtWaitIO compile or stream 8 FE/mask abortable
rtWaitResolver compile or stream 8 mask abortable
rtWaitStall compile or stream 8 single abortable

rtWhileIO compile 8 FE/mask abortable

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 39

rtAbort();

This function closes the current command list, purges all commands already stored in hardware and

forces the system and laser in idle state. The function also restores the system interlock.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 40

rtAcceptData(long DataType);

The functions rtSetVarBlock, rtAcceptData and rtVarBlockFetch combined with font definition

functions provide a toolset to implement a marking solution for variable text. The character set

(font) is constant and downloaded on the RAM disk of the target controller prior to the text marking.

A ping-pong storage system for the variable text allows concurrently reading and writing.

rtAcceptData adds an accept data event to the command list. When executed the ping-pong

buffers are exchanged.

parameters:

DataType : reserved for future use

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 41

rtAddCalibrationData(const char* FileName);

This function call adds offset data to the target's deflector calibration stored in flash.

parameters:

FileName : name of the text file holding the offset data

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 42

rtArcMoveTo(double X, double Y, double BF);
rtArcTo(double X, double Y, double BF);

The function rtArcTo queues an arc wise marking while rtArcMoveTo queues an arc wise move

(laser off). The arc starts at the current position and goes to coordinate (X, Y) using the BF as bulge

factor. The bulge is the tangent of 1/4 the included angle for an arc segment, made negative if the

arc goes clockwise from the start point to the end.

parameters:

X,Y : target position, range -8388.608...8388.607 mm

BF : bulge factor

Example:

rtListOpen(1)

rtJumpTo(0,0)

rtLineTo(20,0)

rtArcTo(20,30,1)

rtListClose()

After the example code was loaded into the script editor, the rhothor executable simulates the

marking by pressing the View button. The arcs center point lies at (20,15) and runs counter

clockwise over an angle of 180 degrees. (BF = tangent(45°))

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 43

rtBurst(long Time);

This function adds a burst command to the list. During execution of a burst, the gate signal is

activated while the motors are standing still. The rtBurst function can be used to increase corner

sharpness. Hovering the setpoint at the corner buys the deflectors more time to reach the corners

position.

parameters:

Time : hover time, range 0...2147483647 µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 44

rtCircle(double X, double Y, double Angle);

rtCircleMove(double X, double Y, double Angle);

The function rtCircle queues a circle marking while rtCircleMove queues a circular movement. The

parameters X and Y define the center point of the circle. The Radius is defined as the distance

between the center point and the current position. The angle is positive for counter clockwise and

negative for clockwise marking.

parameters:

X,Y : center position, range -8388.608...8388.607 mm

Angle : degrees

Example:

rtListOpen(1)

rtJumpTo(0,0)

rtLineTo(20,0)

rtCircle(20,15,270)

rtListClose()

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 45

rtEraseFromFlash(const char* FileName);

Function erases a file from flash. All file names used on the CUA32 are case sensitive. When file

is not found, ERR_OK is returned.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 46

rtFileClose();

rtFileCloseAtHost();

rtFileCloseAtIndex(long Index);

The function rtFileCloseAtIndex closes the command list and stores the complete list to flash

memory at the designated sector. The CUA32 flash is formatted to 250 sectors. 249 of them are

available for saving files. The first sector, with index 0, is reserved to hold boot start code. Each

sector is 256 Kbyte in size. When a command list doesn't fit in a single sector, it continues in the

next. The application should verify that the complete command list can be stored in consecutive

free flash memory. CUA32-FE flash memory management is left to the library when invoking

rtFileClose. The function rtFileCloseAtHost compiles and saves command list as a binary file on

the host computer. The file can be uploaded afterwards using rtFileUpload or rtFileUploadAtIndex.

parameters:

Index : sector number

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 47

rtFileDownload(const char* FileName, const char* DestFile);

This function copies a file stored on flash to the host.

parameters:

FileName : flash file name (zero terminated string)

DestFile : destination file name flash file name (zero terminated string)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 48

rtFileFetch(const char* FileName);

This command adds all commands comprised by the file on the system's flash to the command list.

parameters:

FileName : zero terminated string

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 49

rtFileOpen(const char* FileName);

rtFileOpen allocates memory on the host computer and opens the list for compilation. The host

maintains the complete command chain during its construction. No list commands are sent to the

device. In this mode the instruction set becomes extended with control flow commands. When

rtFileClose is called, the list is compiled and saved on the CUA32 flash. When rtFileCloseAtHost is

called, host memory is used.

parameters:

FileName: file name (zero terminated string, length < 244 bytes)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 50

rtFileUpload(const char* SrcFile, const char* FileName);

rtFileUploadAtIndex(const char* SrcFile, const char* FileName, long Index);

The function rtFileUploadAtIndex copies a file from host to flash at specified sector. When a file

doesn't fit in a single sector, it continues in the next. The application should verify that the all the

data from the source file can be stored in consecutive free flash memory. The CUA32 flash is

formatted to 250 sectors. 249 of them are available for saving files. The first sector, with index 0, is

reserved to hold boot start code. Each sector is 256 Kbyte in size. CUA32-FE flash memory

management is left to the library when invoking rtFileUpload.

parameters:

SrcFile : source file name (zero terminated string)

FileName : flash file name (zero terminated string, length < 244 bytes)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 51

rtFontDef(const char* Name);

rtCharDef(long Ascii);

rtFontDefEnd();

List commands can be structured into fonts. All commands submitted between rtFontDef and

rtFontDefEnd are not executed but stored on the target’s flash drive. An ascii based index scheme

can be set up by using rtCharDef headers. The CUA32 allows definitions of fonts containing up to

255 characters. When the command rtFontDefEnd is executed, the font is fully downloaded into

the target controller and ready to be used. The front end only needs to send ascii strings when

executing commands like rtPrint. The target fetches the commands while marking a character from

its local flash dramatically reducing communication overhead.

parameters:

Name : Font name, ignored because only one font can be stored on the target’s RAM-disk.

Ascii : ascii code 1…255

The ascii code 0 is not available because the 0 character is used to mark the end of a string.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 52

rtFormatFlash();

This function deletes all files, including the boot start file, from the flash. Calibration data and

system settings, also stored on the flash, are maintained.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 53

rtGetAnalog(long Nr, long* Value);

Function samples the analog voltage on the selected IO pin

parameters:

Nr =5: query voltage on IO5

Nr =6: query voltage on IO6

Nr =7: query voltage on IO7

Nr =8: query voltage on IO8

Value : place holder to store the sample (mV)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 54

rtGetCanLink(long Address, long* Value);

CANopen devices use PDO messages to report changes. Messages of interest, selected using

rtScanCanLink, are logged by the CUA32-FE controller. The application can read back message

data using this function.

Parameters:

Address : 0…7, data in first log buffer

Address : 8…15, data in second buffer

Value: place holder to store the byte

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 55

rtGetCfgIO(long Nr, long *Value);

The function queries the configuration setting of the selected IO pin. IO functionality and their

respective configuration setting can be depicted from the rhothor.exe configuration page. The

returned value equals the IO pin’s drop-down list index.

parameters:

Nr : 1,2...,17

Value : placeholder to store configuration setting

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 56

rtGetCounter(long* Value);

The function queries the target’s counter value. This counter is altered when rtIncrementCounter or

rtSetCounter is executed. Querying this counter allows the host to determine which commands are

executed and which commands are still in the queue.

parameters:

Value : place holder to store the target's counter.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 57

rtGetDeflReplies(long* CH1, long* CH2, long* CH3);

The function returns the setpoints (Xdefl,Ydefl,Zdefl) of the deflectors. The chapter six axis

numerical control system from this document explains how these values are calculated.

parameters:

CH1 : place holder for X deflector setpoint (µm)

CH2 : place holder for Y deflector setpoint (µm)

CH3 : place holder for Z deflector setpoint(µm)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 58

rtGetFieldSize(double* Size);

rtGetFieldSizeZ(double* Size);

The function rtGetFieldSize returns the field size of the XY deflection system. The function

rtGetFieldSizeZ returns the focal range of the Z axis.

parameters:

Size : place holder to store the target's field size (mm)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 59

rtGetFileIndex(const char* FileName, long* Index);

This function searches the flash for a file with the declared FileName. When found, its index is

returned. When not found, index is set to -1.

parameters

FileName : file name to be searched (zero terminated string)

Index : place holder to receive file index

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 60

rtGetFirstFreeUSBDevice(char* Name);

rtGetNextFreeUSBDevice(char* Name);

The CUA32-FE operating system support addressable USB connectivity. Each device can be given

a unique name allowing to application to target its connection requests, regardless of the physical

connector. The function rtGetFirstFreeUSBDevice start searching the USB tree for the first available

CUA32 device. When found, its USB ID string is returned. This string can be set by the rhothor

executable. By concussively calling rtGetNextFreeUSBDevice a complete list of available CUA32

devices can be obtained. A USB ID string is a zero-terminated string with a total length limited to 64

bytes. When no more free devices are found, a zero string is returned. The returned strings serve

as an address to select which USB device to open (rtSelectDevice).

parameters

Name : 64-byte place holder to receive the USB ID string (zero terminated string)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 61

rtGetFlashFirstFileEntry(char* Name, long* Size);

rtGetFlashNextFileEntry(char* Name, long* Size);

With these functions an application can query the CUA32-FE flash content. Obtaining the directory

starts by calling rtGetFlashFirstFileEntry followed by successively calling rtGetFlashNextFileEntry

until the returned Name equals a zero string.

parameters

Name : 244-byte place holder to receive file name (zero terminated string)

Size : place holder to receive file size

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 62

rtGetFlashMemorySizes(long* Total, long* Allocated);

This function returns both total and allocated flash memory sizes. The CUA32 master device is fitted

with a flash disk comprising 250 sectors each 256 Kbyte in size.

parameters

Total, Allocated : placeholders to store the memory sizes (bytes)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 63

rtGetID(char* Name);

This function returns the "USB ID" string as specified in the rhothor configuration program.

parameters

Name : 64-byte place holder for the USB ID string (zero terminated string)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 64

rtGetIO(long* Value);

Function returns the current digital levels sampled on the IO's of the selected target. Bit 0 holds

value of IO1, bit 1 of IO2.... The bit values related with the analog IO's are calculated. On those IO’s

the analog voltage is sampled and compared with midscale value (2.5V). When higher a one bit will

be returned.

parameters:

Value : place holder to store the sample

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 65

rtGetIP(char* Mac, char* IP);

When host connection is done over USB, the ethernet connector can be used to send UDP

commands over the internet. The devices can be directly connected or connected over a switch. To

map IP with MAC addresses, the CUA32 master controller maintains an ARP-cache containing four

entries. The MAC addresses are device specific and known. The rtGetIP function allows the

application to obtain their IP address needed for internet communication.

parameters:

Mac : “dd.dd.dd.dd.dd.dd” (zero terminated string, dd: “0”…”255”)

IP : 16-byte place holder to receive IP address (IPV4)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 66

rtGetLaserLink(long Address, long* Value);

Function queries the laser link connected to the target controller.

parameters:

Address : 0x80...0xFF

Value : place holder to store the reply.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 67

rtGetMaxSpeed(double* Speed);

The function returns the maximal speed of the target controller. The maximal speed is set by to 100

times the field size / sec.

parameters:

Speed : placeholder to store the speed (mm/sec)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 68

rtGetQueryTarget(long* Index);

This function returns the index, 1 to 8, of the current query target (rtSetQueryTarget).

parameters

Index : place holder for current query target

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 69

rtGetResolvers(double* X, double* Y);

System returns the uncalibrated on the fly positions for both X and Y axis in mm. (resolution 1 µm)

parameters:

X,Y : placeholders to store the on-the-fly-offset counters (mm)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 70

rtGetScannerDelay(long* Delay);

Rhothor deflectors can be customer tuned to any delay between 60 and 350 µsec. Shorter delays

will increase system bandwidth while fast operational speeds require a longer delay setting for the

deflection system. The setting and tuning are done through the rhothor executable. The result is

queried using this function. When combined with rtGetSetpointFilter the application can calculate

the theoretical value for the laser delay (rtSetLaserTimes):

laser on delay = setpoint filter + scanner delay – laser rise time

laser off delay = setpoint filter + scanner delay – laser fall time

parameters:

Delay : place holder for the deflector delay (µsec).

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 71

rtGetSerial(long* Serial);

This function returns the serial number of the CUA32-FE device.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 72

rtGetSetpointFilter(long* TimeConst);

This function returns the time constant of the setpoint filter. The setpoint filter can be set using the

rhothor executable. This function combined with rtGetScannerDelay allows the application to

calculate the theoretical values for the laser delay (rtSetLaserTimes).

parameters:

TimeConst : place holder for the setpoint filter time constant (µsec)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 73

rtGetStatus(long* Memory);

This function returns ERR_BUSY (2) when there are still commands waiting for execution. When

the command queue is empty, the command returns ERR_OK (-1) . When the parameter Memory

is not NULL, the queue size is returned. In some cases, the application could use this size when

adding commands. When the queue becomes too large, the application should suspend command

generation to avoid running out of memory.

parameters:

Memory : placeholder to receive the estimated size of the command list (bytes)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 74

rtGetTablePositions(double* X, double* Y, double* Z);

Function returns the actual table setpoint positions.

parameters:

X,Y,Z : place holders to store the stepper current setpoints (mm)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 75

rtGetTarget(long* Mask);

This function returns the current target mask (rtSetTarget).

parameters

Mask : place holder for current mask

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 76

rtGetVersion(char* Version);

This function returns the version of the dynamic link library.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 77

rtIfIO(long Value, long Mask);

rtElseIfIO(long Value, long Mask);

rtElse();

rtEndIf();

These functions add a control flow to the command list. Processing a rtIfIO command starts by

waiting until all connected targets are idle. Afterwards the IO state of the least significant target is

tested against the declared value. The comparison only considers those IO with their corresponding

mask bit set to one. When the result returns equal, the instruction sequencing is continued until

rtElse or rtElseIfIO is encountered. When the comparison returns false, the instruction sequencer

continues at the next rtElse, rtElseIfIO or rtEndIf . These functions can only be used when the queue

is opened in compile mode. When used in list mode 5 the waiting for idle is omitted.

parameters:

Value : 0...65535

Mask : 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 78

rtIncrementCounter();

This function appends an increment counter event to the command list. Every target has a counter

that can be controlled and queried through commands. The counter can be used by the application

to determine which commands have been processed and which commands are still in the queue.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 79

rtIndexFetch(long Index);

This command adds all commands stored in flash at the selected index to the command list.

parameters:

Index : 1...249

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 80

rtJumpTo(double X, double Y);

rtJumpTo3D(double X, double Y, double Z);

This command adds a jump to the command list. Jumps are executed by the target processors as a

linear ramp at jump speed. Laser is switched to idle during command execution.

parameters:

X, Y, Z : target position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 81

rtLineTo(double X, double Y);

rtLineTo3D(double X, double Y, double Z);

rtLineToXD(double X, double Y, double Z, double TX, double TY, double TZ, long

Mask);

This command adds a line marking to the command list. The line starts at current position and

extends towards the target position. Marking speed (rtSetSpeed) is used during execution. All

axes are synchronized and will reach the destination at the same time. The function rtLineToXD

has an additional parameter Mask to control which axes to move. Target positions of disabled

axis’s are ignored.

parameters:

X, Y, Z : deflector target position, range -8388.608...8388.607 mm

TX, TY, TZ : table target position, range -8388.608...8388.607 mm

Mask: axis enable mask

Bit 0= true: move X deflector

Bit 1= true: move Y deflector

Bit 2= true: move Z deflector

Bit 3= true: move X table

Bit 4= true: move Y table

Bit 5= true: move Z table

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 82

rtListOpen(long Mode);

rtListClose();

With these commands an application controls the use of the CUA32 command queues.

parameters:

Mode =1: rtListOpen(1) allocates 256KB memory on the host computer and opens the list for

compilation. The host maintains the complete command chain during its construction. No list

commands are sent to the device. In this mode the instruction set becomes extended with control

flow commands. The command rtListClose compiles, transfers, and starts execution of the list. In

general, a single command occupies 8 bytes, so the size of the command list will be limited to 32000

commands.

Mode =2: rtListOpen(2) will open a list for streaming. The list operates like a FIFO memory. The

application adds commands to the queue, while the CUA32 device retrieves and processes them.

To maximize data bandwidth commands are gathered and send in batches to the CUA32 device.

Each batch is 1024 bytes in size. When rtListClose is called, the last batch is padded with NOP

commands before being send. The CUA device has 32-Kbyte dedicated dual port memory to hold

the queue data. When the command list becomes larger, the library will extend the queue capacity

using host memory. To avoid running out of memory, the application should regularly query the total

size of the command queue (rtGetStatus).

Mode =3: rtListOpen(3) allocates 256KB memory on the host computer and open the list for

compilation similar to rtListOpen(1). When rtListClose is called, the complete list is compiled and

saved on the CUA32 flash as a boot start file. This file will be started whenever the CUA32 device

is powered on. Like in list mode 1, the size of the command list is limited to 32000 commands.

Mode =4: rtListOpen(4) operates like rtListOpen(1) and is kept for compatibility reasons.

Mode =5: rtListOpen(5) operates much like rtListOpen(1). While the latter uses fifo memory from

front end and target devices, lists opened in mode 5 will be exclusively stored on the targets.

Changing target (rtSetTarget) or invoking queue functions targeting all or the CUA32-FE are not

allowed in this mode. The execution of conditional flow commands will run faster because the

target can access all IO data locally.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 83

rtLoadCalibrationFile(const char* FileName);

This function copies the file content, containing the calibration, in the systems flash memory.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 84

rtMoveTo(double X, double Y);

rtMoveTo3D(double X, double Y, double Z);

rtMoveToXD(double X, double Y, double Z, double TX, double TY, double TZ,

long Mask);

This command adds a linear movement to the command list. The movement starts at current

position and extends towards the target position. During the movement laser is set to idle and the

marking speed is used. All axes are synchronized and will reach the destination at the same time.

The function rtMoveToXD has an additional parameter Mask to control which axes to move. Target

positions of disabled axis’s are ignored.

parameters:

X, Y, Z : deflector target position, range -8388.608...8388.607 mm

TX, TY, TZ : table target position, range -8388.608...8388.607 mm

Mask: axis enable mask

Bit 0= true: move X deflector

Bit 1= true: move Y deflector

Bit 2= true: move Z deflector

Bit 3= true: move X table

Bit 4= true: move Y table

Bit 5= true: move Z table

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 85

rtOpenCanLink(long Baudrate);

This function queues a configuration event. When executed, the front-end controller initializes its

CAN interface . Knowledge of this protocol is needed for proper understanding. The CUA32-FE

uses a CANopen as an NMT master device. When executed it sets the baudrate and broadcasts

the CANopen wake up message.

parameters:

Baudrate: bit/sec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 86

rtParse(const char* Cmd);

This function provides a string-based interface to the CUA32 controller. The Cmd command string

is parsed and the resulting DLL functions is invoked. The string must be C-code compatible and

may contain “//” sequence to mark comments. The command string should be terminated with a

zero-byte preceded by a return and line feed sequence. The use of this function should be avoided

because an application gains performance by calling library functions directly. On the other hand,

flash files created using rtParse also contain the source code. This source can be read back for

editing using the rhothor executable.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 87

rtPowerProfileTo(double X, double Y, char* Pixels);

This function queues a line marking to the command list. When executed the target controller

marks a line towards point (X,Y) starting from current position. The parameter pixels points to a

hexadecimal string. After conversion to binary its content is used to set the laser power during the

mark. A value 255 selects the 100% laser output setting while 0 drives the laser towards its idle

setting. The function rtSetPowerLevels is provided to map power requirements with actual output

data. Like with deflectors, every 10 µsec a new value is set. The CUA32-TGT controller uses a

linear interpolation scheme to harmonize the available power data with the execution time of the

mark.

Actual power steering output:
IO5 voltage=(pwr*(pwr100-pwr0)/256 + pwr0)*5mV
PulseWidth=(pwr*(pwr100-pwr0)/256 + pwr0)*(Period /1000) µsec

parameters:

X, Y : deflector target position, range -8388.608...8388.607 mm

Pixels: zero terminate hexadecimal string, maximal length including zero byte is 511 bytes

Example:
…

rtSetSpeed(1000)

rtJumpTo(0,0)

rtSetPowerLevels(1000,0)

rtPowerProfileTo(10,0,”FF80C000”)

…

The hexadecimal pixel string in this example contains four binary values dividing the 10 milli

second marking into three areas. Top line shows the gate signal and bottom line shows the

voltage on IO5. The analog voltage starts at 5V (FF80C000) and goes down to 2.5V (FF80C000)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 88

during the first, rises to 3.75V (FF80C000) during the second and goes to zero (FF80C000) during

the last phase of the mark.

rtPrint(const char* data);

This function queues a constant string mark. When executed, the system will mark the string

pointed to by parameter data. Prior to invocation a font must be uploaded to the CUA32-TGT

devices (rtFontDef, rtCharDef and rtFontDefEnd).

parameters:

data : pointer to a zero terminated string. Its length, including the zero byte, must be smaller than

255 characters.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 89

rtPulse(double X, double Y);

rtPulse3D(double X, double Y, double Z);

This command adds a pulse command to the list. Pulse commands are executed by starting a linear

ramp with idling laser towards the target position. The last portion of the movement is done with

activated laser signal. Duration of this pulse is determined by the setting of oscillator 3 and the

selected laser mode (rhothor.exe). The speed used for ramping is calculated based upon the

distance, the selected marking speed (rtSetSpeed) and minimal gate period time.

(rtSetMinGatePeriod). When the distance towards target position is smaller than the minimal gate

period, the ramping speed is reduced.

parameters:

X,Y,Z : target position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 90

rtReset();

This function resets the processing units of the CUA32-MST master and all connected CUA32-

SLV slave devices. Running commands are aborted, command queues cleared and the system

reconfigured. The USB and TCP communication stacks are maintained to keep up the connection.

The boot start file on flash isn’t started.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 91

rtResetCalibration();

This function resets the target's calibration.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 92

rtResetCounter();

This function appends a reset counter event to the command list.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 93

rtResetResolver(long Nr);

This function adds a reset resolver command to the list. When the command is executed, the target

controller will reset the selected on-the-fly counter.

parameters:

Nr =1: on-the-fly counter X axis

Nr =2: on-the-fly counter Y axis

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 94

rtRunServer(long Id, void* Params1, void* Params2);

reserved rhothor function

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 95

rtScanCanLink(long Address, long Node, long Index, long SubIndex);

This function queues a CANopen configuration. CANopen devices can be configured to report

status changes to the network. The CUA32-FE scans all PDO traffic on the CANopen bus and

stores messages of interest in local memory. The logged data can be queried by the application

using rtGetCanLink or the CUA32-MST device can stall command processing until a specific

message data has been received rtWaitCanLink.

parameter:

Address=0: log transfer data in first message 8 bytes buffer

Address=8: log transfer data in second 8 bytes buffer

Index=0: Setup scanning for PDO messages from node.

SubIndex=1: log PDO1 transfer from node

SubIndex=2: log PDO2 transfer from node

SubIndex=3: log PDO3 transfer from node

SubIndex=4: log PDO4 transfer from node

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 96

rtSelectDevice(const char* IP);

This method is used to setup a physical connection with a CUA32 device. Once connected all library

functionality becomes available to the application. The device and the connection type are declared

by the content of the IP string.

* example IP : USB

The connection with the CUA32 device will be made over USB. The USB tree will be searched for

the first available CUA32 device.

* example IP : USB "newson"

The connection with the CUA32 device will be made over USB. The USB tree will be searched for a

device with USB ID set to "newson".

* example IP : TCP "172.16.224.20"

The connection with the CUA32 device will be made over the ethernet connection using TCP-IP

protocol and targeting IP address 172.16.224.20.

* example IP : UDP "172.16.224.20"

The connection with the CUA32 device will be made over the ethernet connection using UDP-IP

protocol and targeting IP address 172.16.224.20.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 97

rtSetAnalog(long Value, long Mask);

This function adds an analog alteration command to the command list. When executed, the target's

analog outputs will be set to the desired value. To change, the analog output must be enabled

(rhothor.exe) and the mask bit must be set. The target's DA convertors have a 5V full scale and a

resolution of 12 bit.

parameters:

Value : voltage, range 0...5000 mV

Mask : IO bit 5,6,7 and or 8 must be set to change the analog output

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 98

rtSetCanLink(long Node, long Index, long SubIndex, char* Data);

This function queues a CANopen communication. Knowledge of this protocol and the accessed

CAN device are needed for proper use. The CUA32-FE supports both PDO and SDO type

messages. The parameter Data points to a hexadecimal string which is converted to binary prior to

transmission. The parameters Node, Index and SubIndex are routing directives for the CANopen

network.

parameters:

Node : device CANopen number

Index=0: PDO transfer mode

SubIndex=1: start PDO1 transfer

SubIndex=2: start PDO2 transfer

SubIndex=3: start PDO3 transfer

SubIndex=4: start PDO4 transfer

When the function is invoked with an invalid SubIndex (<1 or > 4) the message will be sent as a

PDO1 message.

Index>0: SDO transfer mode

Depending on the size of data an expedited or segmented SDO transfers will occur. The

parameters Index and SubIndex are used by the receiving node to route the data to the right

object.

example: rtSetCanLink(16,0,0,”14000F”);

This function sends a PDO1 message (20,0,15) to node 16.

example: rtSetCanLink(16,12321,0,B1010B0101000000);

This function sends an SDO message (177,1,11,1,1,0,0,0) to node 16, object 12321

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 99

rtSetCfgIO(long Nr, long Value);

This function adds an IO configuration change in the command list. While the rhothor executable is

commonly used, automatic application configuration can be implemented. IO functionality and their

respective selection values can be depicted from the rhothor.exe configuration page. Using the

rhothor software for configuration of IO’s is easy. The program guarantees settings of paired

configurations (on the fly, pulse & direction…) and configuration execution sequence. When using

rtSetCfgIO calls for configuration, one has to make sure that the command calls make sense. When

IO1 is configured as “OTF XA+”, IO9 should be configured as “OTF XA-“. Furthermore, all IO’s

should be configured in sequence for proper operation. First call rtSetCfgIO to configure IO1, then

IO2 and continue until IO17. The value needed to select the function is the zero-based index from

the drop-down list (rhothor executable). Threshold and polarization of the inputs can also be

controlled using this function. Setting bit 16 in Value will select the high threshold while setting bit

17 will invert the input.

parameters:

Nr : 1:IO1, 2:IO2... 17:IO17

Value : function number

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 100

rtSetCounter(long Value);

This function appends a counter preload event to the command list. When executed the target's

sequence counter is loaded with the desired value.

parameters:

Value : 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 101

rtSetFieldSize(double Size);

This function adds a field size change in the command list. When this command is processed the

scaling of the coordinates send to Ch1 and Ch2 deflectors is altered. The relation between system

and deflector units is defined as follows:

deflector setpoint (bit) = (16640000/field size) * system setpoint (mm)

parameters:

Size : deflectors field size, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 102

rtSetImageMatrix(double a11, double a12, double a21, double a22);

This function adds an image transformation matrix change event to the command list. When

executed the target's image transformation (ImgAij) matrix is altered. An application can rotate and

stretch images in the XY- plane using the transformation matrix.

parameters:

a11,a12,a21,a22 : factor

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 103

rtSetImageOffsRelXY(double X, double Y);

This function queues an offset change. When executed the declared offset values are transformed

(ImgAij) and added to the image offset vector. This relative offset can be used to create fonts. A font

is a set of images (characters). Each image contains line commands specifying the typeface and a

rtSetImageOffsRelXY command. The latter defines the character width and can be used to shift the

cursor to the next position.

parameters:

X,Y : relative image offset position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 104

rtSetImageOffsXY(double X, double Y);

This function queues an offset change. When executed the image offset vector (ImgOffsX,

ImgOffsY) will be loaded with the declared values.

parameters:

X,Y : image offset position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 105

rtSetImageOffsZ(double Z);

This function queues an image Z-offset change. When executed the image Z-offset vector

(ImgOffsZ) will be loaded with the declared value.

parameters:

Z : image offset position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 106

rtSetImageRotation(double Angle);

This function queues an image transformation matrix change. When executed the target's image

transformation matrix (ImgAij) will be loaded with a rotation function. The function is the same as:

rtSetImageMatrix(cos(Angle),-sin(Angle),sin(Angle),cos(Angle))

parameters:

Angle : rotation angle in radians

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 107

rtSetIO(long Value, long Mask);

This function adds an output change event to the command list. When executed by the target, the

output values will be overwritten as follows:

bit 0 of “Value” is copied to the output bit of IO1 only when bit 0 of “Mask” is true,

bit 1 of “Value” is copied to the output bit of IO2 only when bit 1 of “Mask” is true….

parameters:

Value, Mask : range 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 108

rtSetJumpSpeed(double Speed);

This function queues a configuration event. When executed, the jump speed will be set to Speed.

parameters:

Speed : speed in mm/s

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 109

rtSetLaser(bool OnOff);

This function queues a laser control event. During command processing, the laser is controlled

together with the deflection motors. When rtSetLaser(1) is executed, the laser is activated

continuously until explicitly switched off by calling rtSetLaser(0). This functionality is useful for laser

power calibration.

parameters:

OnOff =0: gate signal will be active during marking and switched off on idle.

OnOff =1: gate signal will always be on

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 110

rtSetLaserFirstPulse(double Time);

This function queues a laser control event to the command list. Some lasers have power-up or first

pulse suppression features controlled by a lead pulse preceding the actual signal burst. With this

function the duration of said pulse can be set. This function is only available when the mode of

IO17 was set to “Burst” (rhothor executable)

parameters

Time : duration of the first pulse in µsec.

Example:

…

rtSetOscillator(3,10,2); // set laser period 10 µsec and pulse width 2 µsec

rtSetLaserFirstPulse(20); // lead pulse 20 µsec

rtBurst(100); // just to see the signal

…

The first pulse measured when this script was run equals 22 µsec. This results from the

concatenation of the 20 µsec wake up pulse with the first burst pulse.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 111

rtSetLaserLink(long Address, long Value);

This function adds a laser link data upload event. When executed, the target will load the laser link's

addressed register with Value. Execution takes 130 µsec during which the laser is idled.

parameters

Address : range 0...127

Value : range 0...255

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 112

rtSetLaserTimes(long GateOnDelay, long GateOffDelay);

This function adds a configuration event to the command list. Actual deflector positions are delayed

in time. By shifting the laser signal, resynchronization with deflector movement is obtained.

rtGetScannerDelay and rtGetSetpointFilter return the selected time constants from both, deflector

and setpoint filter. When laser rise and fall times are known, GateOnDelay and GateOffDelay can

be calculated. When not, a trial-and-error approach should be used. The calculation:

laser on delay = setpoint filter + scanner delay – laser rise time

laser off delay = setpoint filter + scanner delay – laser fall time

parameters:

GateOnDelay, GateOffDelay : 0...2047 µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 113

rtSetLoop(long LoopCtr);

rtDoLoop();

These functions define a loop. All commands between rtSetLoop and rtDoLoop will be repeated.

Parameter LoopCtr declares the number of executions. A zero value will create in an infinite loop.

Loop functions can only be used when the command queue is opened in compile mode. When

called within list mode 5, the loop is managed by the target controllers. The CUA32-FE controller

processes the loop in all other compile modes. Nesting of control flow commands is limited to 16

levels.

parameters:

LoopCtr : 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 114

rtSetMatrix(double a11, double a12, double a21, double a22);

This command adds a transformation matrix change event to the command list. When executed the

target's transformation matrix is altered. An application can rotate and stretch all graphical output in

the XY- plane using the transformation matrix.

parameters:

a11,a12,a21,a22 : factor

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 115

rtSetMinGatePeriod(long Time);

This function adds a configuration event to the command list. The minimal gate period is used to

limit output frequency when pulse commands (rtPulse, rtPuls3D) are processed. After execution,

the period between pulse outputs from said functions will not be smaller than the declared time.

parameters:

Time : 0…65535 µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 116

rtSetOffsIndex(long Index);

The CUA32-TGT has 8 vectors allowing the application to preset several offsets values. This

function adds a configuration event to the command list. When executed it activates the indexed

offset. Values stored on this index are offsets the marking while updates (rtSetOffsXY) will be

stored on this index. Indexing of offset provides a straight forward solution to shift relative positions

between images on a single marking.

parameters:

Index: 0…7

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 117

rtSetOffsXY(double X, double Y);

This function adds an offset change event in the command list. All output coordinates are shifted by

an offset vector. When executed, this command will set this shift to the declared values.

parameters:

X,Y : image offset position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 118

rtSetOffsZ(double Z);

This function adds a Z-offset change event in the command list. All output coordinates are Z-shifted

by a Z-offset vector (OffsZ). When executed, this command will set this shift to the declared value.

parameters:

Z : image offset position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 119

rtSetOscillator(long Nr, double Period, double PulseWidth);

This function adds a configuration event to the command list. Combined with controlling connected

deflectors, the target controller also controls the laser. Several steering modes are available

including Gated, Q-switched, PWM-CO2 and speed modulated Q-switching. Configuration is done

over three programmable oscillators which can be set up by this function.

parameters:

Nr =1: Function sets period and pulse width CO2 activated

Nr =2: Function sets pulse width CO2 idle (period must be the same as the Nr 1 setting)

Nr =3: Function sets period and pulse width Burst mode

Period : range 0...819.18 µsec

PulseWidth : range 0...Period

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 120

rtSetOTF(long Nr, bool On);

This command adds a configuration event to the command list. Its execution switches the on-the-fly

offsetting on or off. When activated, the on-the-fly counter value is subtracted from the graphical

coordinates. The resulting difference is sent to the deflector. The on-the-fly counter is not controlled

by this function and remains activated.

parameters:

Nr = 1: function applies to X axis

Nr = 2: function applies to Y axis

Nr = 3: function applies to Z axis

On : 1 for on, 0 for off

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 121

rtSetPower(long pwr)

rtSetPowerLevels(long pwr100, long pwr0);

The function rtSetPower queues a laser transparent mean to set laser power between markings.
When CO2 laser mode is selected, the function will set the pulse width. When analog power out
(IO5) is selected, this command will set the analog value. The parameter pwr has to be set to 1000
when full power is desired and zeroed for gating without laser light.

The actual values, voltage or pulse width, needed to obtain the desired power levels is likely to
change over time. When a laser ages, its power output decreases. The function rtSetPowerLevels
is added to cope with this. With said function the application can set the pulse width or voltage for
full and idle power output. Those values will be used to scale the parameter value pwr of the
rtSetPower command. This power mapping is also used when executing functions
rtSetPowerProfile and rtPowerProfileTo

Parameters:
Pwr : desired power level in 0.1%
Pwr100: steering value in 0.1% for full power (pwr = 1000)
Pwr0: steering value in 0.1% for idle power (pwr = 0)

Power control over IO5 when set as “Power Output”
IO5 has priority over PWM or laser-link power output control. When configured as power output
the function will set the output voltage on IO5 without changing the pulse width or forwarding a
power set command to the laser-link.
IO5 voltage=(pwr*(pwr100-pwr0)/1000 + pwr0)*5mV

Power control over IO17 when set as “CO2(Gate*Osc1+!Gate*Osc2)”
CO2 laser are controlled using 2 oscillators. When the gate signal is active, IO17 is connected to
oscillator 1, when inactive the pin is driven by oscillator 2. The function rtSetPower controls the
laser energy when asserted so it only impacts the PulseWidth of oscillator 1.
PulseWidth=(pwr*(pwr100-pwr0)/1000 + pwr0)*(Period /1000) µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 122

rtSetPowerProfile(char* Pixels);

This function queues a power profile configuration to the command list. The parameter pixels

points to a hexadecimal string. After conversion to binary its content is used to set the power

profile used when wobbling (rtSetWobbleEx). When initializing the wobble controller, the CUA32-

TGT calculates the greatest common divisor between normal and tangent wobble frequencies.

Besides being used as a reference signal for said frequencies, the resulting period is used as a

mapping input for the power look up table. Its 360° period is divided into a number of segments

equal to the length of the binary pixel string. Every segment will be executed using the power level

stored in his pixel byte.

Some laser types support dynamic power steering. When laser power modulation is selected, the

pixel string controls the power setting of the laser during the wobble movement. Pixel data 255

sets the laser output (analog output, PWM or laser link) at the 100% level while 0 sets it 0% level.

Like with deflectors, every 10 µsec a new power value is set. The CUA32-TGT controller uses a

linear interpolation scheme to harmonize the available power data points with the wobble period of

the reference wave. A scaling mechanism defining 0% and 100% settings is available to cope with

laser-to-laser differences and aging issues (rtSetPowerLevels).

Actual power steering output:
IO5 voltage=(pwr*(pwr100-pwr0)/256 + pwr0)*5mV
PulseWidth=(pwr*(pwr100-pwr0)/256 + pwr0)*(Period /1000) µsec

When speed modulation is activated (rtSetWobbleEx Type 102 or 202) the frequencies and

starting phases of both normal and tangential wobble components remain the same. During a

period of the reference signal, its rotating speed is modulated to achieve the desired speed profile

over the wobble. The wobble figure remains unaffected. Segments containing smaller pixel data

will be executed more quickly to compensate the differences in line densities (ref. rtSetWobbleEx)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 123

rtSetPulseBulge(double Factor);

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 124

rtSetQueryTarget(long Index);

This function sets the query target index. A single CUA32 device can comprise up to 8 target

controllers, each having 17 IO's and up to three connected rhothor deflectors. When IO's are polled

and target status is queried, the query index is used to select the target of interest. At default, the

query index is set to 1. This function takes 50 milliseconds to execute.

parameters

Index : 1…8

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 125

rtSetResolver(long Nr, double StepSize, double Range);

This mode adds an on-the-fly-configuration event to the command list. Using the CUA32 controller,

on the fly marking is easily realized. The target controller uses a A/B resolver input scheme

connected to an on-the-fly-offset counter. This counter in altered with step size whenever a flank is

detected. The direction is determined by phase shift. The minimal time between flank changes is 2

µsec. When this command is executed, the step size is defined, and the offset counter cleared. The

range parameter is obsolete and should be set to zero.

parameters:

Nr = 1: function applies to X axis

Nr = 2: function applies to Y axis

Nr = 3: function applies to Z axis

StepSize : mm

Range : obsolete parameter, set to 0

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 126

rtSetResolverCal(const char* FileName);

This function call sets the resolver calibration offset data on the selected target.

parameters:

FileName : name of the text file holding the offset data

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 127

rtSetResolverPosition(long Nr, double Position);

This function adds an on-the-fly-data change event to the command list. When executed, the target's

on-the-fly-offset counter is loaded with the declared value.

parameters:

Nr = 1: function applies to X axis

Nr = 2: function applies to Y axis

Position : -8388.607... 8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 128

rtSetRotation(double Angle);

This function adds a transformation matrix change event to the command list. When executed the

target's transformation matrix (Aij) will be loaded with a rotation function maintaining the previous

loaded scaling (rtSetScale(Scale)) The function is the same as:

rtSetMatrix(Scale*cos(Angle),- Scale*sin(Angle), Scale*sin(Angle), Scale*cos(Angle))

parameters:

Angle : NAN or rotation angle in degrees

The CUA32 supports the use of NAN constants to select an analog input as the source for the

rotation angle. A 5 V voltage on the selected analog port rotates the image 180° (counter

clockwise) while grounding it rotates the image -180° (clockwise). A 2.5 V voltage corresponds

with no rotation.

NAN constants:

0x7F800005: analog input 5 will be used to set the rotation

0x7F800006: analog input 6 will be used to set the rotation

0x7F800007: analog input 7 will be used to set the rotation

0x7F800008: analog input 8 will be used to set the rotation

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 129

rtSetScale(double Scale);

This function adds a transformation matrix change event to the command list. When executed the

target's transformation matrix (Aij) will be scaled maintaining the previously loaded rotation

(rtSetRotation(Angle)). The function is the same as :

rtSetMatrix(Scale*cos(Angle),- Scale*sin(Angle), Scale*sin(Angle), Scale*cos(Angle))

The CUA32 supports the use of NAN constants to select an analog input as the source for the

scale. A 5 V voltage on the selected analog port sets the scale to the Scale value of the previous

rtSetScale command while grounding it minimizes the scale to 0.

NAN constants:

0x7F800005: analog input 5 will be used to set the rotation

0x7F800006: analog input 6 will be used to set the rotation

0x7F800007: analog input 7 will be used to set the rotation

0x7F800008: analog input 8 will be used to set the rotation

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 130

rtSetSpeed(double Speed);

This function adds a speed change event to the command list. During execution of marking functions

(rtLineTo, rtMoveTo, rtArcTo...) the deflectors setpoints are moved at marking speed. When

executed, this function sets the target's marking speed to the declared value.

parameters:

Speed : NAN or speed in mm/s

The CUA32 supports the use of NAN constants to select an analog input as the source for the

speed. A 5 V voltage on the selected analog port sets the speed to the Speed value of the

previous rtSetSpeed command while grounding the analog pin minimizes the speed to 100

mm/sec.

NAN constants:

0x7F800005: analog input 5 will be used to set the speed

0x7F800006: analog input 6 will be used to set the speed

0x7F800007: analog input 7 will be used to set the speed

0x7F800008: analog input 8 will be used to set the speed

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 131

rtSetTable(long Nr, double Position);

This function adds a table-data-event to the command list. Besides controlling deflectors and laser,

the target is also able to control stepper motors. The target controller comprises three stepper

position regulators to provide the needed logic. When this command is executed, the controller

doesn't move the connected stepper but loads it's setpoint and actual position with the declared

value. This function could be used after calling rtSetTableWhileIO as a part of the axis reference

cycle.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Position : range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 132

rtSetTableDelay(long Nr, long Delay);

The table logic operates under direct (sperate mode) or implicit control (hybrid mode). The stepper's

actual position counter is regulated to align with the obtained setpoint. When correctly set, this

regulation guarantees that the outgoing pulse signals can be handled by the actual stepper motor.

To limit pulse frequency changes, the logic comprises a low pass filter. When executed, this function

sets its time constant. An easy way to determine the value to be set is using a trial-and-error

approach. Choose a delay time which feels right and invoke a table move command at the desired

speed. Make sure that the movement is long enough so the full speed could be reached. When

executed correctly, decrease the delay time and repeat the trial. When the first trial already faulted

increase the delay. The maximal frequency that can be generated by the CUA32 controller is 100

KHz. However, limited pull up torque of the stepper motors will reduce this frequency. The

application should make sure that no table movements are issued when the speed (rtSetSpeed) is

set too high.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Delay : range 0...2147483.647 µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 133

rtSetTableLimitSwitches(long Nr, long MinStop; long MaxStop);

This function adds a configuration event to the command list. When executed, this function sets

the limit switches for a table axis. Using limit switches is a commonly used strategy for limiting the

mechanical travel range. As soon as the moving axis hit’s the limit switch, the movement will be

stopped. The limit switches will be polled during execution of the commands rtSystemTableMove

and rtSystemTableMoveRel. When during execution of those functions the table-coordinates

increase only the MaxStop input will be polled while the MinStop input will be polled during the

opposite movement. The limit switch input should be high to enable the table movements.

Limit switches may be located on a target different from the target selected by rtSetTarget. The

parameters MinStop and MaxStop use the following format:

• Parameter value divided by 100 equals the target number that holds the limit switch

• Parameter value modulo 100 equals the IO number on said target

Values smaller than 100 locate the limit switches on the target device currently being addressed

(rtSetTarget)

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

MinStop : input number of low side limit switch, zero for none

MaxStop : input number of high side limit switch, zero for none

example:

…

rtSetTarget(2); // select target nr. 2

rtSetTableLimitSwitches(1,301,302); // X axis uses IO1 and IO2 of target nr. 3 as limit switches

…

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 134

rtSetTableMaxSpeed(long Nr, double Speed);

This function adds a configuration event to the command list. When executed, this function sets

the maximal speed for the table axis. The value is used as a clipping level whenever the table

speed is being set. Combined with the axis step size, it also determines the high time of the PULS

signal. When running at maximal speed, the duty cycle of the PULS signal will be 50%. The

maximum output frequency of the PULS output (IO9, IO11, IO13 on a CUA32-TGT controller) is

500 KHz. When the axis step size is set to 2 µm, the Speed value is limited to 1000 mm/s. (2 µm *

500.000 steps/sec = 1000 mm/s).

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Speed : speed in mm/s

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 135

rtSetTableRange(long Nr, long Type, double Value);

This function adds a configuration event to the command list. With this function the travel range of

an axis can be limited. When parameter Type equals one, the function parameter Value defines

the minimal table position. Maximal table position can be set by calling this function with

parameterType set to two. The target controller uses a clipping mechanism when table is steered

beyond its ranges.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Type =1: minimal table setpoint

Type =2: maximal table setpoint

Value =1: clipping value in mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 136

rtSetTableSnapSize(long Nr, double SnapSize);

rtSetTableSnapSizeEx(long Nr, double SnapSize, double ClipSize);

This function queues a configuration event. When executed, the command activates the hybrid axis

mode. Normally marking functions (rtArcTo, rtLineTo...) are executed by the deflectors limiting the

coordinate range of their parameters. When deflectors are steered outside their field size, a clipping

protecting mechanism jumps in. Hybrid marking is an easy-to-use tool to overcome this limitation.

When activated the table axis’s as well as the deflectors track the graphical coordinate stream. High

frequency components of the coordinate stream are covered by deflectors while the longer low

frequency movements are executed using the table axes. Table movement is started as soon as the

deflector is steered above SnapSize or below -SnapSize. The hybrid mode is switched off when the

function is called with zero as SnapSize or by calling direct table functions (rtTableMove,

rtTableLineTo…). The parameter ClipSize defines the operational range for the deflectors. The speed

used to position the tables is set by rtSetTableSpeed while the process speed is set by rtSetSpeed.

It can be that the latter is higher than the table speed so during long runs the table axis’s will not be

able to keep up. When the deflectors reach an outer boundary, set by ClipSize, the target controller

will stall. As soon as the deflectors coordinates are back within the area defined by SnapSize the

command processing resumes. When the hybrid mode is activated with the function

rtSetTableSnapSize the clip size is set to twice the snap size.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

SnapSize : range 0...8388.607 mm

ClipSize : range SnapSize...8388.607 mm

Hybrid process

Snapsize

Clipsize

X

Y

beam inside track area:
continue job while
repositioning table to put
beam in process area

beam inside stall area:
stall job while
repositioning table to put
beam in center field

beam inside process area:
continue job and stall table

Fieldsize

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 137

rtSetTableSpeed(double Speed);

This function queues a configuration event. When executed, the command sets the speed used for

all table axis moves. The CUA32-TGT target controller will not move any axis faster as set by

rtSetTableMaxSpeed. An application should avoid invoking this function setting the speed above

that of the slowest axis.

parameters:

Speed : speed in mm/s

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 138

rtSetTableStepSize(long Nr, double StepSize);

This function adds a table configuration event to the command list. When executed the axis position

increment for every outgoing step is defined. Table axes are controlled by CUA32-TGT target

systems using a direction and a step signal. The direction signal specifies the movement's

orientation while the frequency and number of outgoing pulses determine speed and distance of the

travel. Both signals are controlled by internal logic. This function activates this logic and should be

called prior to any other table commands. When called with step size set to zero, the logic is idled.

Axis orientation can be altered by using a negative value for step size.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

StepSize : mm/step

example:

table axis comprising stepper and spindle

stepper motor
steps/rev

spindle
pitch

StepSize=pitch/steps/rev

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 139

rtSetTarget(long Mask);

A complete CUA32 system can comprise up to 8 target controllers. Commands can be sent to one

or several target controllers at the same time to provide synchronized or independent control of all

connected deflection systems. Activation of a target controller is done by simply setting its mask bit.

When single target functions are called, the least significant activated bit is used to define the

function's target.

parameters:

Mask : 0...255

Example:

rtSetTarget(0b01000001); single target functions will apply to target 1 while masked target

functions will apply to targets 1 and 7

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 140

rtSetVarBlock(long i, char data);

Not all the content is known at compile time for some marking jobs. Serial numbers and production

code are last minute data that have to fed to the system prior to marking. When the CUA32-MST

has a life host connection, changing the marking content is easily achievable. Variable data

memory blocks are used to provide similar flexibility whenever the system runs without host. The

CUA32-MST controller has two 2 Kbyte variable blocks. A Ping-Pong accessing scheme is used to

handle semaphore issues. While one data block provides data for the current marking the other

one is free for data entry.

Parameters:

I : 0...2047, address to store the character code

Data : character code to be stored

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 141

rtSetWhileIO(long Value, long Mask);

This function adds an interlock configuration to the command list. Interlocking is an easy way to

abort lasering when some IO events happen. IO’s with their mask bit set will be compared against

Value . Any deviation will stop the laser and aborts normal command processing on all installed

target controllers. This feature should not be used as a safety system! During an interlock error all

queued commands are ignored. The interrupt function rtSystemSetWhileIO provides means to

disable the interlock.

Parameters:

The parameter Value is the binary presentation of the input levels. I1 mapped to bit 0, I2 to bit 1

and so on.

The parameter Mask is similar but has one additional bit. When bit 23 in Mask is set, interlock

error will be triggered when the system detects deflector tracking or communication error.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 142

rtSetWobble(double Diam, long Freq);

rtSetWobbleEx(long nType, double nAmpl, long nFreq, long tType, double tAmpl,

long tHarm, long tPhase);

rtSetWobbleEx(long Type, double B, long b, long dy, double A, long a, long dx);

This function adds a wobble control function to the command list. When image commands are

processed (rtLineTo,rtArcTo,…) the deflection moves the bare laser beam across the workpiece. In

some cases, the resulting marking will be too thin. Hatching techniques can be used to create more

solid lines. However, generating the needed hatch movements to obtain the desired effect is not

always easy. Wobbling is a known alternative and easier to implement. Wobble adds oscillation style

movements when image commands are executed. With the function rtSetWobbleEx the application

can configure two sine wave generators. The output of the first lets the beam oscillate orthogonal to

the marking direction while the second lets the beam oscillate in the marking direction. Both

oscillators can be parameterized separately. The CUA32 controller matches the selected

frequencies to guaranteed predictable phase shifts.

The CUA32 uses following wobble function definitions:
X=A*sin(a*2*PI*t+dx*PI/180)
Y=B*sin(b*2*PI*t+dy*PI/180)
The resulting Lissajous figure is automatically aligned with the momentary direction of the image
command being processed. So, in these definitions, X is not the X axis of the deflection system,
but the momentary (tangent) direction of the laser beam movement (excluding wobble). Y direction
lies perpendicular (normal) to said movement. When initializing the wobble controller, the CUA32-
TGT calculates the greatest common divisor between normal and tangent frequencies. The result
will be used to set the base frequency for the wobble generators. Wobbling will be disabled when
said frequency is lower than 10 Hz.

Wobble controller

rtSetWobble
rtSetWobbleEx
rtSetWobbleMode

rtJumpTo
rtLineTo
rtArcTo
rtJumpTo3D
rtLineTo3D
...

X

Y

X wobble =
A*sin(n*a+dx)

Y

X

dx

dy a

power
modulation

Y wobble =
B*sin(n*b+dy)

LUT

n

n

Laser Power

speed
modulation

rtSetPowerProfile

rtSetPowerLevels

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 143

During the wobble, an additional power signal can be generated to modulate the laser. When the

laser doesn’t support power output modulation, a similar effect can be achieved by using speed

modulation. In the latter, the output of the wobble sinewave generators aren’t just sine waves. They

will run more quickly in wobble areas where to power needs to be reduced.. The need of power

modulation during wobble is quite obvious. When spiraling during a movement it is easy to see that

the outside areas are getting much more energy than the center. Power modulation enables

equalizing power density over the surface. When power modulation is needed, the power levels

need to be set prior by using the function rtSetPowerProfile.

Wobbling is automatically switched off when the laser goes inactive to minimize power

consumption. After configuration, the application can suspend or change wobble direction and

phase between vector lines by using the function rtSetWobbleMode

rtSetWobbleEx parameter usage depends on the selected wobble type:

Type = 0 or 1: old style parameters, kept for backwards compatibility

Type = 100: add Lissajous style wobble

Type = 101: add Lissajous style wobble + laser power modulation

Type = 102: add Lissajous style wobble + speed modulation

Type = 200: run Lissajous style wobble until aborted (rtAbort)

Type = 201: run Lissajous style wobble + laser power modulation until aborted (rtAbort)

Type = 200: run Lissajous style wobble + speed modulation until aborted (rtAbort)

Type 10x and 20x style parameters:

B : normal amplitude, mm

A : tangent amplitude, mm

b : normal frequency 10...4000 Hz

a : tangent frequency 10...4000 Hz

dx;dy : degrees

Type 101 and 102 laser power modulation:

When power modulation is activated the power profile string (rtSetPowerProfile) is used to change

the laser power during the wobble. Linear interpolation is used to smooth out the power changes.

wobble induced power distribution

wobble movement

movement from image command
(rtLineTo,rtArcTo...)

lower laser line density at center area

larger laser line density at border area's

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 144

Type 102 and 202 speed modulation:

When speed modulation is activated the frequencies of the normal and tangent component stay

the same. Only the speed distribution within their periods is altered. The speed distribution is

calculated using the power profile string (rtSetPowerProfile).

Type 20x wobble style laser milling:
When wobble type 20x is selected, its movement isn’t added to the successive image vectors but
executed immediately on the current position. The command fetcher is halted until the wobbling is
aborted. (rtAbort). This mode can be quite useful when the deflection system is used like a mill.
The controller spins the laser while the application uses another CUA32-TGT or third-party
controller to move the workpiece.

Type 0 and 1 style parameters: (kept for backwards compatibility).

nType =0: normal component disabled

nType =1: normal sine wave

nAmpl : normal amplitude, mm

nFreq : normal frequency 10...4000 Hz

tType =0: tangent component disabled

tType =1: tangent sine wave

tAmpl : tangent amplitude, mm

tHarm : tangent frequency = tHarm*normal frequency

tPhase : -180...180 degrees

The function rtSetWobble activates a regular circular wobble.

Parameters:
Diam : mm

Freq : 10...4000 Hz

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 145

rtSetWobbleMode(long Dir, long Phase);

This function adds a wobble control function to the command list. After configuration (rtSetWobble,

rtSetWobbleEx) the wobble is activated for counter clockwise operation starting at zero angle. The

wobble on the first line will start counter clockwise spiraling with starting angle equal to line

direction or arc tangent. rtSetWobbleMode provides free choice of start angle and spiraling

direction. This function should be called after rtSetWobble or rtSetWobbleEx.

parameters:

Dir =1: counter clockwise rotation

Dir =0: suspend wobble

Dir =-1: clockwise rotation

Phase : set wobble phase angle, relative to tangent -180...180 degrees

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 146

rtSleep(long Time);

This command adds a sleep event to the command list. When the command is executed, the target

controller suspends and starts a timer. The command processing is resumed when the timer

elapses. The command rtSleep is often used to implement a wait-after-jump feature.

parameters:

Time : 0...2147483647 µsec

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 147

rtStoreCalibrationFile(const char* FileName);

This function copies the target's calibration in a readable file on the host.

parameters

FileName : file name under which the calibration will be saved.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 148

rtSuspend();

This function adds a suspend command to the command list. When processed, the targets will go

in suspended state. rtSuspend is a list command, all pending list commands will be executed. A

suspended system can be restarted by calling rtSystemResume;

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 149

rtSynchronise();

This function adds a synchronization command to the command list. When processed, the front-

end controller will poll all targets for idle before resuming uploading commands. When targets

mark different images, it is very likely that they will not finish at the same time. This function can be

used when those targets share a table system and waiting for the last is needed.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 150

rtSystemResume();

This function restarts command processing in case the system was suspended. It can be used in

combination with the list command rtSuspend() to control list processing in streaming mode.

Execution of command queues opened in compile mode starts after closing them (rtListClose()).

Queues opened in streaming mode normally start when the dll sends the first commands to the

hardware. Execution of streaming data can be suspended (rtSuspend()) when this behavior is not

desired. The application can afterwards start list execution by calling rtSystemResume.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 151

rtSystemSetIO(long Value, long Mask);

This command sets the digital output values

bit 0 of “Value” is copied to the output bit of IO1 only when bit 0 of “Mask” is true,

bit 1 of “Value” is copied to the output bit of IO2 only when bit 1 of “Mask” is true….

parameters:

Value, Mask : range 0…65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 152

rtSystemSuspend();

Immediately suspend all command processing. The target controllers will stop fetching instructions

from their FIFO's. The instructions that are being processed during this call will complete normally.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 153

rtSystemTableMove(long Nr, double Position);
rtSystemTableMoveRel(long Nr, double Offset);
rtSystemTableStop();

The functions rtSystemTableMove and rtSystemTableMoveRel start a move of the selected table.

The speed at which the table moves can be set using rtSetTableSpeed command. The movement

is stopped by calling rtSystemTableStop. Combined with the functions rtSetTableLimitSwitches

and rtSetTableRange these functions are typically used to implement jogging and referencing

functionality. The functions are picked up by all targets but only the selected target (rtSetTarget)

makes the actual move. The other target’s need command data to activate their limit switches.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Position : target position, range -8388.608...8388.607 mm

Offset: relative table position in mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 154

rtSystemUartOpen(long baudrate, char parity, char stopbits);

This function opens the serial interface.

parameters:

baudrate : 1200...115600 bit/sec

parity : 'n','e','o','s' for none, even, odd, or space

stopbits : 1 or 2

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 155

rtSystemUartWrite(long bytes, char* data);

The parameter data points to a string which is send by the UART as is. The function appends the

string to the UART transmission queue and returns immediately, before the transmission itself

terminates. The latter depends on baudrate and number of bytes to transmit. The UART controller

has a 512-byte fifo to store messages for sending. Prior to invocation the application must make

sure that the fifo has enough free memory to avoid overflow errors.

parameters:

bytes : number of bytes to be transmitted, range 1 to 511

data : pointer to the data that must be send

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 156

rtSystemUDPsend(char* IP, short port, char* data);

This method triggers an internet communication. When in use as a client, the ethernet connection

of the CUA32-FE controller supports ARP server addressing. The application should query (rtGetIP)

to obtain the assigned IP address. Parameter data points to a hexadecimal coded string containing

the transmission content and length. The string is converted from hex codes to binary prior to being

send. The first byte holds the length, limiting the UDP data size to 255 bytes.

parameters

IP : target IP address

port : target port

data : points to hexadecimal string of maximal 512 characters (‘0’...’9’,’A’...’F’).

example:

rtSystemUDPsend(“172.16.224.20”,10000,”020AA0”);

Sends (2,10,160) to port 10000 at IP address 172.16.224.20.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 157

rtTableArcTo(double X, double Y, double BF);

This command queues an arc style marking. The arc starts at the current position and goes to

coordinate (X, Y) using the BF as bulge factor. The bulge is the tangent of 1/4 the included angle for

an arc segment, made negative if the arc goes clockwise from the start point to the end. Marking

speed (rtSetSpeed) is used during execution. During execution the XY table is used and not the

deflection system. When both systems are used independently to mark lines, the application should

make sure that the deflectors are in a known position whenever markings are made using the

stepper controls.

parameters:

X,Y : target position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 158

rtTableJog(long Nr, double Speed, long WhileIO);

This function queues a table move event. When executed, the table setpoint will start to move using

the requested speed. The function aborts when the designated input (WhileIO) becomes low or after

invoking rtAbort . The command starts the move and returns immediately when invoked with

parameter WhileIO set to zero. This allows parsing and executing deflector movements concurrent

with a moving table axis.

The rtTableJog function can also be used to implement referencing functionality. The

parameterWhileIO equals the input number on which the reference switch is connected. Said switch

may be located on a target different from the target selected by rtSetTarget. The parameter WhileIO

uses the following format:

• Parameter value divided by 100 equals the target number that holds the limit switch

• Parameter value modulo 100 equals the IO number on said target

Values smaller than 100 locate the limit switches on the target device currently being addressed

(rtSetTarget)

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Speed : mm/s

WhileIO (modulo 100): 0 for none, 1 for IO1, 2 for IO2, ... , 16 for IO16

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 159

rtTableLineTo(double X, double Y);
rtTableLineTo3D(double X, double Y, double Z);

These functions queue a line marking. The line starts at current table position and extends towards

the target position. Marking speed (rtSetSpeed) is used during execution. During execution the XY

table is used and not the deflection system. When both systems are needed independently to mark

lines, the application should make sure that the deflectors are in a known position whenever

markings are made using the stepper controls.

parameters:

X,Y,Z : target position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 160

rtTableMove(long Nr, double Target);
rtTableMoveTo(double X, double Y);
rtTableMoveTo3D(double X, double Y, double Z);

These functions queue a table move to the command list. The move starts at current table position

and extends towards the target position. Marking speed (rtSetSpeed) is used and laser is idled

during execution. rtTableMove starts a single, rtTableMoveTo starts a dual and rtTableMoveTo3D

starts a triple axis move.

parameters:

Nr =1: stepper X axis

Nr =2: stepper Y axis

Nr =3: stepper Z-axis

Target,X,Y,Z : target position, range -8388.608...8388.607 mm

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 161

rtUartRead(long* bytes, char* data);

This function reads received data from serial interface. The content is stored in location pointed by

data. The number of received bytes is stored in parameter bytes. At most, the function returns 511

bytes, so the parameter data should point to a 512-byte array.

parameters:

bytes : placeholder for the number of received bytes

data : 512-byte placeholder for the received data.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 162

rtVarBlockFetch(long Start, long Size, const char* FontName);

This function queues a variable string mark. When executed, the system will mark the string stored

in the variable buffer. Prior to invocation a font must be uploaded to the CUA32-TGT devices

(rtFontDef, rtCharDef and rtFontDefEnd).

parameters:

Start : 0...2047, index in variable buffer of the first character

Size : number of characters

FontName : ignored

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 163

rtWaitCanLink(long ByteNr, long Value, long Mask);

This function queues a CANopen type wait event. When it executes the front-end controller will

stall command processing until scanned PDO commands contained data as set by Value. Only

bits with corresponding one bit in Mask will be evaluated. The node and PDO telegram of interest

need to selected (rtScanCanLink) prior to invoking.

parameters:

ByteNr : 0…7, data in first log buffer

ByteNr: 8…15, data in second buffer

Value : 0...65535

Mask : 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 164

rtWaitIdle();

This function queues a conditional stall. When executed, the command fetcher from the target
controller will be suspended until all preceding commands including the last are processed. This
function uses single target addressing. The function is forwarded as specified by the last call
rtSetTarget(mask). However only the least significant non-zero bit in mask will select the target. All
other one bits are ignored.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 165

rtWaitIO(long Value, long Mask);

This function queues a conditional stall. When called within list mode 5 the function is handled locally

by the target controllers. In all other list modes, the front-end controller polls the inputs of the least

significant target to compare them against the declared value. Instruction forwarding is suspended

until the directive is met. The comparison only considers those IO’s with their corresponding mask

bit set. Before polling, the controller waits until all addressed targets are idle to guarantee

synchronization. In list mode 5 the command queue is copied and executed independently on every

target. Synchronization is not supported reducing command execution time.

parameters:

Value : 0...65535

Mask : 0...65535

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 166

rtWaitResolver(long Nr, double TriggerPos, long TriggerMode);

This function adds a local control flow command to the command list. During processing, the target

controller suspends command processing until the selected on-the-fly counter has reached its

desired value.

parameters:

Nr =1: on-the-fly counter X axis

Nr =2: on-the-fly counter Y axis

TriggerPos : trigger position, range -8388.608...8388.607 mm

TriggerMode = 1: wait until on-the-fly counter is higher than TriggerPos

TriggerMode = 2: wait until on-the-fly counter is lower than TriggerPos

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 167

rtWaitStall();

This function queues a conditional stall. When executed, the command fetcher from the target
controller will be suspended until all preceding commands excluding the last are processed. This
function uses single target addressing. The function is forwarded as specified by the last call
rtSetTarget(mask). However only the least significant non-zero bit in mask will select the target. All
other one bits are ignored.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 168

rtWhileIO(long Value, long Mask);

rtDoWhile();

These functions add control flow to the command list. It needs calculated instruction locations and

therefore can only be used in compiled mode. Processing a rtWhileIO command starts by waiting

until all connected targets are idle. This waiting guarantees that all target level queues are empty to

synchronize looping. Afterwards the CUA32-FE controller polls the IO state of the least significant

target. Its inputs are compared against parameter Value only considering those with their

corresponding Mask bit set to one. When the result returns equal, the instruction sequencing

embedded between the invocation and its counterpart rtDoWhile is repeated. When the comparison

returns false, the instruction sequencer fetches the first command after rtDoWhile. In list mode 5 a

copy of the same loop runs on every target controller using local queue and IO data. List mode 5

excludes the need to wait for idle resulting in a faster running loop. Loops can be 16 level deep

nested.

parameters:

Value : 0...65535

Mask : 0...65535

Example:

rtSetTarget(3);

rtListOpen(5);

rtJumpTo(-10,10);

rtWhileIO(1,1);

rtLineTo(10,10);

rtLineTo(10,-10);

rtLineTo(-10,-10);

rtLineTo(-10,10);

rtDoWhile();

rtListClose();

Both target 1 and 2 will start drawing a 20 mm square while their input 1 is high. Because both

loops are running independently, the laser is continuously activated while the loop condition is

met. When the same list was opened using mode 1 (rtListOpen(1)), the flow would stall after every

cycle allowing the front-end controller to check input 1 of target 1.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 169

Not supported functions, kept for compatibility.

bcSamplePoint(double X, double Y, long Row, long Col, double Sweep, double* OffsetX, double*

OffsetY);

bcSelectDevice(const char* CommPort);

rtAddCalibrationDataZ(const char* FileName);

rtLoadCalibration();

rtLoadCalibrationFileZ(const char* FileName);

rtResetCalibrationZ();

rtResetEventCounter();

rtSendUartLink(const char* Data);

rtSetHover(long Time);

rtSetImageMatrix3D(double a11, double a12, double a21, double a22, double a31, double a32);

rtSetLead(long Time);

rtSetMaxSpeed(double Speed);

rtSetResolverRange(long Nr, double Range);

rtSetResolverTrigger(long Nr, double Position, long IO);

rtSetTableOffsXY(double X, double Y);

rtSetTableSnap(double Distance);

rtSetTableWhileIO(long Value, long Mask);

rtStoreCalibration();

rtStoreCalibrationFileZ(const char* FileName);

rtWaitEventCounter(long Count);

rtWaitPosition(double Window);

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 170

library functions : return codes

ERR_OK (-1)
The function call completed successfully.

ERR_BUSY (2)
The application tried to invoke a function which requires an idle system on a non-idle system. To

solve, make sure that the command list is closed (rtListClose, rtFileClose or rtAbort) and try again.

ERR_JOB (3)
The application invoked a command list function without having the queue properly opened. To

solve, make sure that the command list is ready to receive commands (rtListOpen, rtFileOpen) and

try again. Open the command list in compile mode (rtListOpen(4)) when control flow commands are

needed.

ERR_HARDWARE (5)
Failed to set up or maintain physical connection with the CUA32 hardware. Verify IP-address, USB

ID string and electrical connection with host and try again.

ERR_DATA (13)
The application invoked a function with invalid parameters. Verify if the function parameters are

within the specification and ranges as described in this manual.

ERR_IMPLEMENTATION (23)
The function is not supported by the library. Function entry is kept for compatibility reasons with

previous library versions.

ERR_INTERLOCK (48)
The front-end systems interlock signal became invalid. The problem source needs to be resolved

after which the interlock can be restored by calling rtAbort or rtReset.

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 171

11. document history

CUA32-App01: first draft

CUA32-App01.1

* rtListOpen (corrected)

* rtSetCfgIO (altered)

* rtSetRotation (corrected)

* rtSetTableMaxSpeed (new)

* rtSetTableSpeed (new)

* rtSetWhileIO (new)

* rtSetWobbleMode (new)

* rtScanCanLink (new)

* rtTableLineTo3D (new)

* rtTableMoveTo3D (new)

CUA32-App01.2

* rtAcceptData (new)

* rtCharDef (new)

* rtFontDef (new)

* rtFontDefEnd (new)

* rtGetDeflReplies (altered)

* rtGetCanLink (new)

* rtLineToXD (new)

* rtMoveToXD (new)

* rtOpenCanLink (new)

* rtParse (altered)

* rtPowerProfileTo (new)

* rtPrint (new)

* rtReset (altered)

* rtSetCanLink (new)

* rtSetLaserFirstPulse (new)

* rtSetTableLimitSwitches (new)

* rtSetTableRange (new)

* rtSetTableSnapSize (altered)

* rtSetTableSnapSizeEx (new)

* rtSetTableWhileIO (altered)

* rtSetVarBlock (altered)

* rtSetWhileIO (altered)

* rtSynchronise()

* rtSystemTableMoveTo (new)

* rtSystemTableMoveToRel (new)

* rtSystemTableStop (new)

* rtVarBlockFetch (altered)

* rtWaitCanLink (new)

 www.newson.be

© Copyright Newson NV, 2000-2022 CUA32-App01.4.0 page 172

CUA32-App01.3 (Q3-2021)

* changed document layout

* deflector calibration (extended)

* resolver calibration (new)

* rtGetResolvers (altered)

* rtSetResolverCal (new)

* rtSetOTF (altered)

* rtSetResolver (altered)

* rtSetResolverCal (new)

* rtSetTableSnapSize, rtSetTableSnapSizeEx (altered)

* rtSetWobbleEx (altered)

CUA32-App01.4 (Q3-2022)

* deflector control (altered)

* laser control (altered)

* on-the-fly resolver calibration (altered)

* table axis control (altered)

* rtPowerProfileTo (altered)

* rtSetPower (new)

* rtSetPowerLevels (new)

* rtSetPowerProfile (new)

* rtSetRotation (altered)

* rtSetScale (altered)

* rtSetSpeed (altered)

* rtSetWobbleEx (altered)

* rtWaitIdle (new)

* rtWaitStall (new)

